Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2612: 1-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795355

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is an immunological assay widely used in basic science research, clinical application studies, and diagnostics. The ELISA technique relies on the interaction between the antigen (i.e., the target protein) versus the primary antibody against the antigen of interest. The presence of the antigen is confirmed through the enzyme-linked antibody catalysis of the added substrate, the products of which are either qualitatively detected by visual inspection or quantitatively using readouts from either a luminometer or a spectrophotometer. ELISA techniques are broadly classified into direct, indirect, sandwich, and competitive ELISA-all of which vary based on the antigens, antibodies, substrates, and experimental conditions. Direct ELISA relies on the binding of the enzyme-conjugated primary antibodies to the antigen-coated plates. Indirect ELISA introduces enzyme-linked secondary antibodies specific to the primary antibodies bound to the antigen-coated plates. Competitive ELISA involves a competition between the sample antigen and the plate-coated antigen for the primary antibody, followed by the binding of enzyme-linked secondary antibodies. Sandwich ELISA technique includes a sample antigen introduced to the antibody-precoated plate, followed by sequential binding of detection and enzyme-linked secondary antibodies to the recognition sites on the antigen. This review describes ELISA methodology, the types of ELISA, their advantages and disadvantages, and a listing of some multifaceted applications both in clinical and research settings, including screening for drug use, pregnancy testing, diagnosing disease, detecting biomarkers, blood typing, and detecting SARS-CoV-2 that causes coronavirus disease 2019 (COVID-19).


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos , Antígenos
2.
Theranostics ; 10(2): 829-840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903153

RESUMO

Arginine (Arg) deprivation is a promising therapeutic approach for tumors with low argininosuccinate synthetase 1 (ASS1) expression. However, its efficacy as a single agent therapy needs to be improved as resistance is frequently observed. Methods: A tissue microarray was performed to assess ASS1 expression in surgical specimens of pancreatic ductal adenocarcinoma (PDAC) and its correlation with disease prognosis. An RNA-Seq analysis examined the role of ASS1 in regulating the global gene transcriptome. A high throughput screen of FDA-approved oncology drugs identified synthetic lethality between histone deacetylase (HDAC) inhibitors and Arg deprivation in PDAC cells with low ASS1 expression. We examined HDAC inhibitor panobinostat (PAN) and Arg deprivation in a panel of human PDAC cell lines, in ASS1-high and -knockdown/knockout isogenic models, in both anchorage-dependent and -independent cultures, and in multicellular complex cultures that model the PDAC tumor microenvironment. We examined the effects of combined Arg deprivation and PAN on DNA damage and the protein levels of key DNA repair enzymes. We also evaluated the efficacy of PAN and ADI-PEG20 (an Arg-degrading agent currently in Phase 2 clinical trials) in xenograft models with ASS1-low and -high PDAC tumors. Results: Low ASS1 protein level is a negative prognostic indicator in PDAC. Arg deprivation in ASS1-deficient PDAC cells upregulated asparagine synthetase (ASNS) which redirected aspartate (Asp) from being used for de novo nucleotide biosynthesis, thus causing nucleotide insufficiency and impairing cell cycle S-phase progression. Comprehensively validated, HDAC inhibitors and Arg deprivation showed synthetic lethality in ASS1-low PDAC cells. Mechanistically, combined Arg deprivation and HDAC inhibition triggered degradation of a key DNA repair enzyme C-terminal-binding protein interacting protein (CtIP), resulting in DNA damage and apoptosis. In addition, S-phase-retained ASS1-low PDAC cells (due to Arg deprivation) were also sensitized to DNA damage, thus yielding effective cell death. Compared to single agents, the combination of PAN and ADI-PEG20 showed better efficacy in suppressing ASS1-low PDAC tumor growth in mouse xenograft models. Conclusion: The combination of PAN and ADI-PEG20 is a rational translational therapeutic strategy for treating ASS1-low PDAC tumors through synergistic induction of DNA damage.


Assuntos
Arginina/deficiência , Argininossuccinato Sintase/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Histona Desacetilases/química , Hidrolases/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Panobinostat/farmacologia , Polietilenoglicóis/farmacologia , Animais , Antineoplásicos/farmacologia , Argininossuccinato Sintase/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Mutações Sintéticas Letais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...