Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(3): 217-241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238594

RESUMO

Cells modify their internal organization during continuous state transitions, supporting functions from cell division to differentiation. However, tools to measure dynamic physiological states of individual transitioning cells are lacking. We combined live-cell imaging and machine learning to monitor ERK1/2-inhibited primary murine skeletal muscle precursor cells, that transition rapidly and robustly from proliferating myoblasts to post-mitotic myocytes and then fuse, forming multinucleated myotubes. Our models, trained using motility or actin intensity features from single-cell tracking data, effectively tracked real-time continuous differentiation, revealing that differentiation occurs 7.5-14.5 h post induction, followed by fusion ~3 h later. Co-inhibition of ERK1/2 and p38 led to differentiation without fusion. Our model inferred co-inhibition leads to terminal differentiation, indicating that p38 is specifically required for transitioning from terminal differentiation to fusion. Our model also predicted that co-inhibition leads to changes in actin dynamics. Mass spectrometry supported these in silico predictions and suggested novel fusion and maturation regulators downstream of differentiation. Collectively, this approach can be adapted to various biological processes to uncover novel links between dynamic single-cell states and their functional outcomes.


Assuntos
Actinas , Fibras Musculares Esqueléticas , Camundongos , Animais , Diferenciação Celular , Mioblastos , Divisão Celular
2.
Curr Biol ; 29(12): 2009-2019.e7, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31178320

RESUMO

Agouti-related protein (AgRP) is a hypothalamic regulator of food consumption in mammals. However, AgRP has also been detected in circulation, but a possible endocrine role has not been examined. Zebrafish possess two agrp genes: hypothalamically expressed agrp1, considered functionally equivalent to the single mammalian agrp, and agrp2, which is expressed in pre-optic neurons and uncharacterized pineal gland cells and whose function is not well understood. By ablation of AgRP1-expressing neurons and knockout of the agrp1 gene, we show that AgRP1 stimulates food consumption in the zebrafish larvae. Single-cell sequencing of pineal agrp2-expressing cells revealed molecular resemblance to retinal-pigment epithelium cells, and anatomic analysis shows that these cells secrete peptides, possibly into the cerebrospinal fluid. Additionally, based on AgRP2 peptide localization and gene knockout analysis, we demonstrate that pre-optic AgRP2 is a neuroendocrine regulator of the stress axis that reduces cortisol secretion. We therefore suggest that the ancestral role of AgRP was functionally partitioned in zebrafish by the two AgRPs, with AgRP1 centrally regulating food consumption and AgRP2 acting as a neuroendocrine factor regulating the stress axis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Estresse Fisiológico/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Técnicas de Inativação de Genes , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glândula Pineal/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA