Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 19(7): 803-811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710609

RESUMO

The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.


Assuntos
Arabidopsis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Arabidopsis/genética , Carcinoma Ductal Pancreático/metabolismo , Espectrometria de Massas , Camundongos , Neoplasias Pancreáticas/genética , Proteoma/análise
2.
Nat Plants ; 8(2): 146-156, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087209

RESUMO

Mistakes in the maintenance of CG methylation are a source of heritable epimutations in plants. Multigenerational surveys indicate that the rate of these stochastic events varies substantially across the genome, with some regions harbouring localized 'epimutation hotspots'. Using Arabidopsis as a model, we show that epimutation hotspots are indexed by a specific set of chromatin states that map to subregions of gene body methylation genes. Although these regions comprise only ~12% of all CGs in the genome, they account for ~63% of all epimutation events per unit time. Molecular profiling revealed that these regions contain unique sequence features, harbour steady-state intermediate methylation levels and act as putative targets of antagonistic DNA methylation pathways. We further demonstrate that experimentally induced shifts in steady-state methylation in these hotspot regions are sufficient to significantly alter local epimutation intensities. Our work lays the foundation for dissecting the molecular mechanisms and evolutionary consequences of epimutation hotspots in plants.


Assuntos
Arabidopsis , Epigênese Genética , Arabidopsis/genética , Cromatina , Metilação de DNA
3.
Genome Biol ; 21(1): 260, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023650

RESUMO

Stochastic changes in DNA methylation (i.e., spontaneous epimutations) contribute to methylome diversity in plants. Here, we describe AlphaBeta, a computational method for estimating the precise rate of such stochastic events using pedigree-based DNA methylation data as input. We demonstrate how AlphaBeta can be employed to study transgenerationally heritable epimutations in clonal or sexually derived mutation accumulation lines, as well as somatic epimutations in long-lived perennials. Application of our method to published and new data reveals that spontaneous epimutations accumulate neutrally at the genome-wide scale, originate mainly during somatic development and that they can be used as a molecular clock for age-dating trees.


Assuntos
Metilação de DNA , Epigenoma , Genoma de Planta , Genômica/métodos , Software , Arabidopsis , Populus , Taraxacum
4.
BMC Genomics ; 21(1): 479, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660416

RESUMO

BACKGROUND: Whole-Genome Bisulfite Sequencing (WGBS) is a Next Generation Sequencing (NGS) technique for measuring DNA methylation at base resolution. Continuing drops in sequencing costs are beginning to enable high-throughput surveys of DNA methylation in large samples of individuals and/or single cells. These surveys can easily generate hundreds or even thousands of WGBS datasets in a single study. The efficient pre-processing of these large amounts of data poses major computational challenges and creates unnecessary bottlenecks for downstream analysis and biological interpretation. RESULTS: To offer an efficient analysis solution, we present MethylStar, a fast, stable and flexible pre-processing pipeline for WGBS data. MethylStar integrates well-established tools for read trimming, alignment and methylation state calling in a highly parallelized environment, manages computational resources and performs automatic error detection. MethylStar offers easy installation through a dockerized container with all preloaded dependencies and also features a user-friendly interface designed for experts/non-experts. Application of MethylStar to WGBS from Human, Maize and A. thaliana shows favorable performance in terms of speed and memory requirements compared with existing pipelines. CONCLUSIONS: MethylStar is a fast, stable and flexible pipeline for high-throughput pre-processing of bulk or single-cell WGBS data. Its easy installation and user-friendly interface should make it a useful resource for the wider epigenomics community. MethylStar is distributed under GPL-3.0 license and source code is publicly available for download from github https://github.com/jlab-code/MethylStar . Installation through a docker image is available from http://jlabdata.org/methylstar.tar.gz.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Software , Sulfitos , Sequenciamento Completo do Genoma/métodos , Biologia Computacional/métodos , Epigenômica , Humanos , Interface Usuário-Computador
5.
Nat Plants ; 6(4): 368-376, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284551

RESUMO

Post-embryonic development and longevity of flowering plants are, for a large part, determined by the activity and maturation state of stem cell niches formed in the axils of leaves, the so-called axillary meristems (AMs)1,2. The genes that are associated with AM maturation and underlie the differences between monocarpic (reproduce once and die) annual and the longer-lived polycarpic (reproduce more than once) perennial plants are still largely unknown. Here we identify a new role for the Arabidopsis AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15) gene as a suppressor of AM maturation. Loss of AHL15 function accelerates AM maturation, whereas ectopic expression of AHL15 suppresses AM maturation and promotes longevity in monocarpic Arabidopsis and tobacco. Accordingly, in Arabidopsis grown under longevity-promoting short-day conditions, or in polycarpic Arabidopsis lyrata, expression of AHL15 is upregulated in AMs. Together, our results indicate that AHL15 and other AHL clade-A genes play an important role, directly downstream of flowering genes (SOC1, FUL) and upstream of the flowering-promoting hormone gibberellic acid, in suppressing AM maturation and extending the plant's lifespan.


Assuntos
Arabidopsis/fisiologia , Meristema/fisiologia , Motivos AT-Hook , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Genes de Plantas , Longevidade/genética , Meristema/genética , Nicotiana/genética
6.
Nature ; 579(7799): 409-414, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188942

RESUMO

Plants are essential for life and are extremely diverse organisms with unique molecular capabilities1. Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.


Assuntos
Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Arabidopsis/química , Espectrometria de Massas , Proteoma/análise , Proteoma/química , Proteômica , Motivos de Aminoácidos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Especificidade de Órgãos , Fosfoproteínas/análise , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Proteoma/biossíntese , Proteoma/genética , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcriptoma
7.
Elife ; 82019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31356150

RESUMO

In many plant species, a subset of transcribed genes are characterized by strictly CG-context DNA methylation, referred to as gene body methylation (gbM). The mechanisms that establish gbM are unclear, yet flowering plant species naturally without gbM lack the DNA methyltransferase, CMT3, which maintains CHG (H = A, C, or T) and not CG methylation at constitutive heterochromatin. Here, we identify the mechanistic basis for gbM establishment by expressing CMT3 in a species naturally lacking CMT3. CMT3 expression reconstituted gbM through a progression of de novo CHG methylation on expressed genes, followed by the accumulation of CG methylation that could be inherited even following loss of the CMT3 transgene. Thus, gbM likely originates from the simultaneous targeting of loci by pathways that promote euchromatin and heterochromatin, which primes genes for the formation of stably inherited epimutations in the form of CG DNA methylation.


Assuntos
Brassicaceae/enzimologia , Brassicaceae/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Mutação , DNA (Citosina-5-)-Metiltransferases/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
PLoS One ; 13(10): e0205179, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321192

RESUMO

Several recent studies indicate that small Open Reading Frames (sORFs) embedded within multiple eukaryotic non-coding RNAs can be translated into bioactive peptides of up to 100 amino acids in size. However, the functional roles of the 607 Stress Induced Peptides (SIPs) previously identified from 189 Transcriptionally Active Regions (TARs) in Arabidopsis thaliana remain unclear. To provide a starting point for functional annotation of these plant-derived peptides, we performed a large-scale prediction of peptide binding sites on protein surfaces using coarse-grained peptide docking. The docked models were subjected to further atomistic refinement and binding energy calculations. A total of 530 peptide-protein pairs were successfully docked. In cases where a peptide encoded by a TAR is predicted to bind at a known ligand or cofactor-binding site within the protein, it can be assumed that the peptide modulates the ligand or cofactor-binding. Moreover, we predict that several peptides bind at protein-protein interfaces, which could therefore regulate the formation of the respective complexes. Protein-peptide binding analysis further revealed that peptides employ both their backbone and side chain atoms when binding to the protein, forming predominantly hydrophobic interactions and hydrogen bonds. In this study, we have generated novel predictions on the potential protein-peptide interactions in A. thaliana, which will help in further experimental validation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fases de Leitura Aberta , Peptídeos/metabolismo , Ligação Proteica , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
9.
Plant Cell ; 30(11): 2741-2760, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30333148

RESUMO

The evolution of plants is characterized by whole-genome duplications, sometimes closely associated with the origin of large groups of species. The gamma (γ) genome triplication occurred at the origin of the core eudicots, which comprise ∼75% of flowering plants. To better understand the impact of whole-genome duplication, we studied the protein interaction network of MADS domain transcription factors, which are key regulators of reproductive development. We reconstructed, synthesized, and tested the interactions of ancestral proteins immediately before and closely after the triplication and directly compared these ancestral networks to the extant networks of Arabidopsis thaliana and tomato (Solanum lycopersicum). We found that gamma expanded the MADS domain interaction network more strongly than subsequent genomic events. This event strongly rewired MADS domain interactions and allowed for the evolution of new functions and installed robustness through new redundancy. Despite extensive rewiring, the organization of the network was maintained through gamma. New interactions and protein retention compensated for its potentially destructive impact on network organization. Post gamma, the network evolved from an organization around the single hub SEP3 to a network organized around multiple hubs and well-connected proteins lost, rather than gained, interactions. The data provide a resource for comparative developmental biology in flowering plants.


Assuntos
Duplicação Gênica/genética , Genoma de Planta/genética , Arabidopsis/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Mapas de Interação de Proteínas , Fatores de Transcrição/genética
10.
BMC Bioinformatics ; 18(1): 37, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095775

RESUMO

BACKGROUND: Many eukaryotic RNAs have been considered non-coding as they only contain short open reading frames (sORFs). However, there is increasing evidence for the translation of these sORFs into bioactive peptides with potent signaling, antimicrobial, developmental, antioxidant roles etc. Yet only a few peptides encoded by sORFs are annotated in the model organism Arabidopsis thaliana. RESULTS: To aid the functional annotation of these peptides, we have developed ARA-PEPs (available at http://www.biw.kuleuven.be/CSB/ARA-PEPs ), a repository of putative peptides encoded by sORFs in the A. thaliana genome starting from in-house Tiling arrays, RNA-seq data and other publicly available datasets. ARA-PEPs currently lists 13,748 sORF-encoded peptides with transcriptional evidence. In addition to existing data, we have identified 100 novel transcriptionally active regions (TARs) that might encode 341 novel stress-induced peptides (SIPs). To aid in identification of bioactivity, we add functional annotation and sequence conservation to predicted peptides. CONCLUSION: To our knowledge, this is the largest repository of plant peptides encoded by sORFs with transcript evidence, publicly available and this resource will help scientists to effortlessly navigate the list of experimentally studied peptides, the experimental and computational evidence supporting the activity of these peptides and gain new perspectives for peptide discovery.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fases de Leitura Aberta , Peptídeos/genética , Bases de Dados Factuais , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...