Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2303115120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824527

RESUMO

The Escherichia coli chemotaxis signaling pathway has served as a model system for the adaptive sensing of environmental signals by large protein complexes. The chemoreceptors control the kinase activity of CheA in response to the extracellular ligand concentration and adapt across a wide concentration range by undergoing methylation and demethylation. Methylation shifts the kinase response curve by orders of magnitude in ligand concentration while incurring a much smaller change in the ligand binding curve. Here, we show that the disproportionate shift in binding and kinase response is inconsistent with equilibrium allosteric models. To resolve this inconsistency, we present a nonequilibrium allosteric model that explicitly includes the dissipative reaction cycles driven by adenosine triphosphate (ATP) hydrolysis. The model successfully explains all existing joint measurements of ligand binding, receptor conformation, and kinase activity for both aspartate and serine receptors. Our results suggest that the receptor complex acts as an enzyme: Receptor methylation modulates the ON-state kinetics of the kinase (e.g., phosphorylation rate), while ligand binding controls the equilibrium balance between kinase ON/OFF states. Furthermore, sufficient energy dissipation is responsible for maintaining and enhancing the sensitivity range and amplitude of the kinase response. We demonstrate that the nonequilibrium allosteric model is broadly applicable to other sensor-kinase systems by successfully fitting previously unexplained data from the DosP bacterial oxygen-sensing system. Overall, this work provides a nonequilibrium physics perspective on cooperative sensing by large protein complexes and opens up research directions for understanding their microscopic mechanisms through simultaneous measurements and modeling of ligand binding and downstream responses.


Assuntos
Quimiotaxia , Proteínas de Escherichia coli , Quimiotaxia/fisiologia , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligantes , Histidina Quinase/metabolismo , Escherichia coli/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/metabolismo
2.
ArXiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36866223

RESUMO

The Escherichia coli chemotaxis signaling pathway has served as a model system for studying the adaptive sensing of environmental signals by large protein complexes. The chemoreceptors control the kinase activity of CheA in response to the extracellular ligand concentration and adapt across a wide concentration range by undergoing methylation and demethylation. Methylation shifts the kinase response curve by orders of magnitude in ligand concentration while incurring a much smaller change in the ligand binding curve. Here, we show that this asymmetric shift in binding and kinase response is inconsistent with equilibrium allosteric models regardless of parameter choices. To resolve this inconsistency, we present a nonequilibrium allosteric model that explicitly includes the dissipative reaction cycles driven by ATP hydrolysis. The model successfully explains all existing measurements for both aspartate and serine receptors. Our results suggest that while ligand binding controls the equilibrium balance between the ON and OFF states of the kinase, receptor methylation modulates the kinetic properties (e.g., the phosphorylation rate) of the ON state. Furthermore, sufficient energy dissipation is necessary for maintaining and enhancing the sensitivity range and amplitude of the kinase response. We demonstrate that the nonequilibrium allosteric model is broadly applicable to other sensor-kinase systems by successfully fitting previously unexplained data from the DosP bacterial oxygen-sensing system. Overall, this work provides a new perspective on cooperative sensing by large protein complexes and opens up new research directions for understanding their microscopic mechanisms through simultaneous measurements and modeling of ligand binding and downstream responses.

3.
mBio ; 12(6): e0310621, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809457

RESUMO

Methylesterase/deamidase CheB is a key component of bacterial chemotaxis systems. It is also a prominent example of a two-component response regulator in which the effector domain is an enzyme. Like other response regulators, CheB is activated by phosphorylation of an aspartyl residue in its regulatory domain, creating an open conformation between its two domains. Studies of CheB in Escherichia coli and related organisms have shown that its enzymatic action is also enhanced by a pentapeptide-binding site for the enzyme at the chemoreceptor carboxyl terminus. Related carboxyl-terminal pentapeptides are found on >25,000 chemoreceptor sequences distributed across 11 bacterial phyla and many bacterial species, in which they presumably play similar roles. Yet, little is known about the interrelationship of CheB phosphorylation, pentapeptide binding, and interactions with its substrate methylesters and amides on the body of the chemoreceptor. We investigated by characterizing the binding kinetics of CheB to Nanodisc-inserted chemoreceptor dimers. The resulting kinetic and thermodynamic constants revealed a synergy between CheB phosphorylation and pentapeptide binding in which a phosphorylation mimic enhanced pentapeptide binding, and the pentapeptide served not only as a high-affinity tether for CheB but also selected the activated conformation of the enzyme. The basis of this selection was revealed by molecular modeling that predicted a pentapeptide-binding site on CheB which existed only in the open, activated enzyme. Recruitment of activated enzyme by selective tethering represents a previously unappreciated strategy for regulating response regulator action, one that may well occur in other two-component systems. IMPORTANCE Two-component signal transduction systems are a primary means by which bacteria sense and respond to their environment. Response regulators are key components of these systems. Phosphorylation of response regulators by cognate histidine kinases generate active conformations which act on specific targets, DNA sequences or proteins. The targets have been considered passive in this process. Our characterization of interaction between response regulator CheB and its target chemoreceptor revealed active participation of the target in response regulator action. We found that a pentapeptide sequence at the carboxyl terminus of Escherichia coli chemoreceptors is a selective tether that binds only phosphorylated CheB, thus selecting the form of this two-component enzyme active for covalent modification of the selecting chemoreceptor. Analogous pentapeptides are found on chemoreceptors in many bacterial species and are presumably also selective tethers. There may well be other, uncharacterized examples of active participation of target molecules in response to regulator action.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Escherichia coli/enzimologia , Salmonella typhimurium/enzimologia , Proteínas de Bactérias/genética , Sítios de Ligação , Hidrolases de Éster Carboxílico/genética , Quimiotaxia , Dimerização , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Salmonella typhimurium/química , Salmonella typhimurium/genética
4.
ACS Chem Biol ; 16(11): 2472-2480, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34647725

RESUMO

Transmembrane receptors are central components of the chemosensory systems by which motile bacteria detect and respond to chemical gradients. An attractant bound to the receptor periplasmic domain generates conformational signals that regulate a histidine kinase interacting with its cytoplasmic domain. Ligand-induced signaling through the periplasmic and transmembrane domains of the receptor involves a piston-like helical displacement, but the nature of this signaling through the >200 Å four-helix coiled coil of the cytoplasmic domain had not yet been identified. We performed single-molecule Förster resonance energy transfer measurements on Escherichia coli aspartate receptor homodimers inserted into native phospholipid bilayers enclosed in nanodiscs. The receptors were labeled with fluorophores at diagnostic positions near the middle of the cytoplasmic coiled coil. At these positions, we found that the two N-helices of the homodimer were more distant, that is, less tightly packed and more dynamic than the companion C-helix pair, consistent with previous deductions that the C-helices form a stable scaffold and the N-helices are dynamic. Upon ligand binding, the scaffold pair compacted further, while separation and dynamics of the dynamic pair increased. Thus, ligand binding had asymmetric effects on the two helical pairs, shifting mean distances in opposite directions and increasing the dynamics of one pair. We suggest that this reflects a conformational change in which differential alterations to the packing and dynamics of the two helical pairs are coupled. These coupled changes could represent a previously unappreciated mode of conformational signaling that may well occur in other coiled-coil signaling proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ligantes , Conformação Proteica , Transdução de Sinais
5.
J Bacteriol ; 202(13)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32341073

RESUMO

In bacterial chemotaxis, chemoreceptors in signaling complexes modulate the activity of two-component histidine kinase CheA in response to chemical stimuli. CheA catalyzes phosphoryl transfer from ATP to a histidinyl residue of its P1 domain. That phosphoryl group is transferred to two response regulators. Receptor control is almost exclusively at autophosphorylation, but the aspect of enzyme action on which that control acts is unclear. We investigated this by a kinetic analysis of activated kinase in signaling complexes. We found that phosphoryl transfer from ATP to P1 is an ordered sequential reaction in which the binding of ATP to CheA is the necessary first step; the second substrate, the CheA P1 domain, binds only to an ATP-occupied enzyme; and phosphorylated P1 is released prior to the second product, namely, ADP. We confirmed the crucial features of this kinetically deduced ordered mechanism by assaying P1 binding to the enzyme. In the absence of a bound nucleotide, there was no physiologically significant binding, but the enzyme occupied with a nonhydrolyzable ATP analog bound P1. Previous structural and computational analyses indicated that ATP binding creates the P1-binding site by ordering the "ATP lid." This process identifies the structural basis for the ordered kinetic mechanism. Recent mathematical modeling of kinetic data identified ATP binding as a focus of receptor-mediated kinase control. The ordered kinetic mechanism provides the biochemical logic of that control. We conclude that chemoreceptors modulate kinase by controlling ATP binding. Structural similarities among two-component kinases, particularly the ATP lid, suggest that ordered mechanisms and control of ATP binding are general features of two-component signaling.IMPORTANCE Our work provides important new insights into the action of the chemotaxis signaling kinase CheA by identifying the kinetic mechanism of its autophosphorylation as an ordered sequential reaction, in which the required first step is binding of ATP. These insights provide a framework for integrating previous kinetic, mathematical modeling, structural, simulation, and docking observations to conclude that chemoreceptors control the activity of the chemotaxis kinase by regulating binding of the autophosphorylation substrate ATP. Previously observed conformational changes in the ATP lid of the enzyme active site provide a structural basis for the ordered mechanism. Such lids are characteristic of two-component histidine kinases in general, suggesting that ordered sequential mechanisms and regulation by controlling ATP binding are common features of these kinases.


Assuntos
Trifosfato de Adenosina/metabolismo , Quimiotaxia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina Quinase/química , Histidina Quinase/genética , Cinética , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/genética , Modelos Moleculares
6.
Protein Sci ; 29(2): 443-454, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31654429

RESUMO

Methylation of specific chemoreceptor glutamyl residues by methyltransferase CheR mediates sensory adaptation and gradient sensing in bacterial chemotaxis. Enzyme action is a function of chemoreceptor signaling conformation: kinase-off receptors are more readily methylated than kinase-on, a feature central to adaptational and gradient-sensing mechanisms. Differential enzyme action could reflect differential binding, catalysis or both. We investigated by measuring CheR binding to kinase-off and kinase-on forms of Escherichia coli aspartate receptor Tar deleted of its CheR-tethering, carboxyl terminus pentapeptide. This allowed characterization of the low-affinity binding of enzyme to the substrate receptor body, otherwise masked by high-affinity interaction with pentapeptide. We quantified the low-affinity protein-protein interactions by determining kinetic rate constants of association and dissociation using bio-layer interferometry and from those values calculating equilibrium constants. Whether Tar signaling conformations were shifted by ligand occupancy or adaptational modification, there was little or no difference between the two signaling conformations in kinetic or equilibrium parameters of enzyme-receptor binding. Thus, differential methyltransferase action does not reflect differential binding. Instead, the predominant determinants of binding must be common to different signaling conformations. Characterization of the dependence of association rate constants on Deybe length, a measure of the influence of electrostatics, implicated electrostatic interactions as a common binding determinant. Taken together, our observations indicate that differential action of methyltransferase on kinase-off and kinase-on chemoreceptors is not the result of differential binding and suggest it reflects differential catalytic propensity. Differential catalysis rather than binding could well be central to other enzymes distinguishing alternative conformations of protein substrates.


Assuntos
Proteínas de Escherichia coli/química , Metiltransferases/química , Receptores de Superfície Celular/química , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Metiltransferases/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Especificidade por Substrato
7.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248079

RESUMO

The chemotactic sensory system enables motile bacteria to move toward favorable environments. Throughout bacterial diversity, the chemoreceptors that mediate chemotaxis are clustered into densely packed arrays of signaling complexes. In these arrays, rod-shaped receptors are in close proximity, resulting in limited options for orientations. A recent geometric analysis of these limitations in Escherichia coli, using published dimensions and angles, revealed that in this species, straight chemoreceptors would not fit into the available space, but receptors bent at one or both of the recently-documented flexible hinges would fit, albeit over a narrow window of shallow bend angles. We have now expanded our geometric analysis to consider variations in receptor length, orientation and placement, and thus to species in which those parameters are known to be, or might be, different, as well as to the possibility of dynamic variation in those parameters. The results identified significant limitations on the allowed combinations of chemoreceptor dimensions, orientations and placement. For most combinations, these limitations excluded straight chemoreceptors, but allowed receptors bent at a flexible hinge. Thus, our analysis identifies across bacterial diversity a crucial role for chemoreceptor flexible hinges, in accommodating the limitations of molecular crowding in chemotaxis core signaling complexes and their arrays.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Quimiotaxia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Membrana/química , Modelos Biológicos , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
8.
PLoS Comput Biol ; 14(7): e1006305, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29965962

RESUMO

It is challenging to decipher molecular mechanisms in biological systems from system-level input-output data, especially for complex processes that involve interactions among multiple components. We addressed this general problem for the bacterial histidine kinase CheA, the activity of which is regulated in chemotaxis signaling complexes by bacterial chemoreceptors. We developed a general network model to describe the dynamics of the system, treating the receptor complex with coupling protein CheW and the P3P4P5 domains of kinase CheA as a regulated enzyme with two substrates, ATP and P1, the phosphoryl-accepting domain of CheA. Our simple network model allowed us to search hypothesis space systematically. For different and progressively more complex regulation schemes, we fit our models to a large set of input-output data with the aim of identifying the simplest possible regulation mechanisms consistent with the data. Our modeling and analysis revealed novel dual regulation mechanisms in which receptor activity regulated ATP binding plus one other process, either P1 binding or phosphoryl transfer between P1 and ATP. Strikingly, in our models receptor control affected the kinetic rate constants of substrate association and dissociation equally and thus did not alter the respective equilibrium constants. We suggest experiments that could distinguish between the two dual-regulation mechanisms. This systems-biology approach of combining modeling and a large input-output dataset should be applicable for studying other complex biological processes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Modelos Biológicos , Trifosfato de Adenosina/metabolismo , Fenômenos Bioquímicos , Quimiotaxia/fisiologia , Simulação por Computador , Escherichia coli/metabolismo , Cinética , Ligação Proteica , Transdução de Sinais/fisiologia , Especificidade por Substrato , Biologia de Sistemas
9.
J Bacteriol ; 200(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229700

RESUMO

Transmembrane bacterial chemoreceptors are extended, rod-shaped homodimers with ligand-binding sites at one end and interaction sites for signaling complex formation and histidine kinase control at the other. There are atomic-resolution structures of chemoreceptor fragments but not of intact, membrane-inserted receptors. Electron tomography of in vivo signaling complex arrays lack distinct densities for chemoreceptor rods away from the well-ordered base plate region, implying structural heterogeneity. We used negative staining, transmission electron microscopy, and image analysis to characterize the molecular shapes of intact homodimers of the Escherichia coli aspartate receptor Tar rendered functional by insertion into nanodisc-provided E. coli lipid bilayers. Single-particle analysis plus tomography of particles in a three-dimensional matrix revealed two bend loci in the chemoreceptor cytoplasmic domain, (i) a short, two-strand gap between the membrane-proximal, four-helix-bundle HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemoreceptors, and phosphatases) domain and the membrane-distal, four-helix coiled coil and (ii) aligned glycines in the extended, four-helix coiled coil, the position of a bend noted in the previous X-ray structure of a receptor fragment. Our images showed HAMP bends from 0° to ∼13° and glycine bends from 0° to ∼20°, suggesting that the loci are flexible hinges. Variable hinge bending explains indistinct densities for receptor rods outside the base plate region in subvolume averages of chemotaxis arrays. Bending at flexible hinges was not correlated with the chemoreceptor signaling state. However, our analyses showed that chemoreceptor bending avoided what would otherwise be steric clashes between neighboring receptors that would block the formation of core signaling complexes and chemoreceptor arrays.IMPORTANCE This work provides new information about the shape of transmembrane bacterial chemoreceptors, crucial components in the molecular machinery of bacterial chemotaxis. We found that intact, lipid-bilayer-inserted, and thus functional homodimers of the Escherichia coli chemoreceptor Tar exhibited bends at two flexible hinges along their ∼200-Å, rod-like, cytoplasmic domains. One hinge was at the short, two-strand gap between the membrane-proximal, four-helix-bundle HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemoreceptors, and phosphatases) domain and the membrane-distal, four-helix coiled coil. The other hinge was at aligned glycines in the extended, four-helix coiled coil, where a bend had been identified in the X-ray structure of a chemoreceptor fragment. Our analyses showed that flexible hinge bending avoided structural clashes in chemotaxis core complexes and their arrays.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/ultraestrutura , Receptores de Superfície Celular/química , Adenilil Ciclases/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Histidina Quinase/química , Processamento de Imagem Assistida por Computador/métodos , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Análise Serial de Proteínas , Receptores de Aminoácido/química , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/ultraestrutura , Transdução de Sinais , Tomografia/métodos
10.
Protein Sci ; 26(8): 1535-1546, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28425142

RESUMO

Autophosphorylating histidine kinase CheA is central to signaling in bacterial chemotaxis. The kinase donates its phosphoryl group to two response regulators, CheY that controls flagellar rotation and thus motility and CheB, crucial for sensory adaptation. As measured by coupled CheY phosphorylation, incorporation into signaling complexes activates the kinase ∼1000-fold and places it under control of chemoreceptors. By the same assay, receptors modulate kinase activity ∼100-fold as a function of receptor ligand occupancy and adaptational modification. These changes are the essence of chemotactic signaling. Yet, the enzymatic properties affected by incorporation into signaling complexes, by chemoreceptor ligand binding or by receptor adaptational modification are largely undefined. To investigate, we performed steady-state kinetic analysis of autophosphorylation using a liberated kinase phosphoryl-accepting domain, characterizing kinase alone, in isolated core signaling complexes and in small arrays of core complexes assembled in vitro with receptors contained in isolated native membranes. Autophosphorylation in signaling complexes was measured as a function of ligand occupancy and adaptational modification. Activation by incorporation into signaling complexes and modulation in complexes by ligand occupancy and adaptational modification occurred largely via changes in the apparent catalytic rate constant (kcat ). Changes in the autophosphorylation kcat accounted for most of the ∼1000-fold kinase activation in signaling complexes observed for coupled CheY phosphorylation, and the ∼100-fold inhibition by ligand occupancy or modulation by adaptational modification. Our results indicate no more than a minor role in kinase control for simple sequestration of the autophosphorylation substrate. Instead they indicate direct effects on the active site.


Assuntos
Ácido Aspártico/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Receptores de Superfície Celular/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Quimiotaxia/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Expressão Gênica , Histidina Quinase/genética , Cinética , Ligantes , Proteínas Quimiotáticas Aceptoras de Metil/genética , Fosforilação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores de Superfície Celular/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Especificidade por Substrato
11.
J Mol Biol ; 428(19): 3789-804, 2016 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-27318193

RESUMO

Dynamics are thought to be important features of structure and signaling in the cytoplasmic domain of bacterial chemoreceptors. However, little is known about which structural features are dynamic. For this largely helical domain, comprising a four-helix bundle and an extended four-helix coiled coil, functionally important structural dynamics likely involves helical mobility and stability. To investigate, we used continuous wave EPR spectroscopy and site-specific spin labels that directly probed, in essentially physiological conditions, the mobility of helical backbones in the cytoplasmic domain of intact chemoreceptor Tar homodimers inserted into lipid bilayers of Nanodiscs. We observed differences among functional regions, between companion helices in helical hairpins of the coiled coil and between receptor conformational states generated by adaptational modification. Increased adaptational modification decreased helical dynamics while preserving dynamics differences among functional regions and between companion helices. In contrast, receptor ligand occupancy did not have a discernable effect on dynamics to which our approach was sensitive, implying that the two sensory inputs alter different chemoreceptor features. Spectral fitting indicated that differences in helical dynamics we observed for ensemble spin-label mobility reflected differences in proportions of a minority receptor population in which the otherwise helical backbone was essentially disordered. We suggest that our measurements provided site-specific snapshots of equilibria between a majority state of well-ordered helix and a minority state of locally disordered polypeptide backbone. Thus, the proportion of polypeptide chain that is locally and presumably transiently disordered is a structural feature of cytoplasmic domain dynamics that varies with functional region and modification-induced signaling state.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Regulação Alostérica , Ácido Aspártico/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Biológicos , Modelos Moleculares , Conformação Proteica
12.
Protein Sci ; 24(11): 1764-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26257396

RESUMO

Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four-helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent-exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin-labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane-distal tight turn (N-helix), and the other carboxyl terminal (C-helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide-spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N- and C-helices. For bilayer-inserted receptors, EPR spectra from sites in the membrane-distal protein-interaction region and throughout the C-helix were typical of well-structured helices. In contrast, for approximately two-thirds of the N-helix, from its origin as the AS-2 helix of the membrane-proximal HAMP domain to the beginning of the membrane-distal protein-interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four-helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.


Assuntos
Quimiotaxia/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Marcadores de Spin
13.
Trends Microbiol ; 23(5): 257-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25834953

RESUMO

Motile Escherichia coli cells track gradients of attractant and repellent chemicals in their environment with transmembrane chemoreceptor proteins. These receptors operate in cooperative arrays to produce large changes in the activity of a signaling kinase, CheA, in response to small changes in chemoeffector concentration. Recent research has provided a much deeper understanding of the structure and function of core receptor signaling complexes and the architecture of higher-order receptor arrays, which, in turn, has led to new insights into the molecular signaling mechanisms of chemoreceptor networks. Current evidence supports a new view of receptor signaling in which stimulus information travels within receptor molecules through shifts in the dynamic properties of adjoining structural elements rather than through a few discrete conformational states.


Assuntos
Quimiotaxia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina Quinase , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Moleculares , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais/genética
14.
Proc Natl Acad Sci U S A ; 111(45): 15940-5, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349385

RESUMO

Bacterial chemotaxis is mediated by signaling complexes that sense chemical gradients and direct bacteria to favorable environments by controlling a histidine kinase as a function of chemoreceptor ligand occupancy. Core signaling complexes contain two trimers of transmembrane chemoreceptor dimers, each trimer binding a coupling protein CheW and a protomer of the kinase dimer. Core complexes assemble into hexagons, and these form hexagonal arrays. The notable cooperativity and amplification in bacterial chemotaxis is thought to reflect allosteric interactions in cores, hexagons, and arrays, but little is known about this presumed allostery. We investigated allostery in core complexes assembled with two chemoreceptor species, each recognizing a different ligand. Chemoreceptors were inserted in Nanodiscs, which rendered them water soluble and allowed isolation of individual complexes. Neighboring dimers in receptor trimers influenced one another's operational ligand affinity, indicating allosteric coupling. However, this coupling did not include the key function of kinase inhibition. Our data indicated that only one receptor dimer could inhibit kinase as a function of ligand occupancy. This selective allosteric coupling corresponded with previously identified structural asymmetry: only one dimer in a trimer contacts kinase and only one CheW. We suggest one of these dimers couples ligand occupancy to kinase inhibition. Additionally, we found that kinase protomers are allosterically coupled, conveying inhibition across the dimer interface. Because kinase dimers connect core complex hexagons, allosteric communication across dimer interfaces provides a pathway for receptor-generated kinase inhibition in one hexagon to spread to another, providing a crucial step for the extensive amplification characteristic of chemotactic signaling.


Assuntos
Quimiotaxia/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Multimerização Proteica/fisiologia , Transdução de Sinais/fisiologia , Regulação Alostérica/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética
15.
J Biol Chem ; 287(50): 41697-705, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23071117

RESUMO

Most bacterial chemoreceptors are transmembrane proteins. Although less than 10% of a transmembrane chemoreceptor is embedded in lipid, separation from the natural membrane environment by detergent solubilization eliminates most receptor activities, presumably because receptor structure is perturbed. Reincorporation into a lipid bilayer can restore these activities and thus functionally native structure. However, the extent to which specific lipid features are important for effective restoration is unknown. Thus we investigated effects of membrane lipid composition on chemoreceptor Tar from Escherichia coli using Nanodiscs, small (∼10-nm) plugs of lipid bilayer rendered water-soluble by an annulus of "membrane scaffold protein." Disc-enclosed bilayers can be made with different lipids or lipid combinations. Nanodiscs carrying an inserted receptor dimer have high protein-to-lipid ratios approximating native membranes and in this way mimic the natural chemoreceptor environment. To identify features important for functionally native receptor structure, we made Nanodiscs using natural and synthetic lipids, assaying extents and rates of adaptational modification. The proportion of functionally native Tar was highest in bilayers closest in composition to E. coli cytoplasmic membrane. Some other lipid compositions resulted in a significant proportion of functionally native receptor, but simply surrounding the chemoreceptor transmembrane segment with a lipid bilayer was not sufficient. Membranes effective in supporting functionally native Tar contained as the majority lipid phosphatidylethanolamine or a related zwitterionic lipid plus a rather specific proportion of anionic lipids, as well as unsaturated fatty acids. Thus the chemoreceptor is strongly influenced by its lipid environment and is tuned to its natural one.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfatidiletanolaminas/metabolismo , Receptores de Superfície Celular/metabolismo , Membrana Celular/química , Membrana Celular/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
16.
Annu Rev Microbiol ; 66: 285-303, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22994495

RESUMO

This review focuses on the early years of molecular studies of bacterial chemotaxis and motility, beginning in the 1960s with Julius Adler's pioneering work. It describes key observations that established the field and made bacterial chemotaxis a paradigm for the molecular understanding of biological signaling. Consideration of those early years includes aspects of science seldom described in journals: the accidental findings, personal interactions, and scientific culture that often drive scientific progress.


Assuntos
Fenômenos Fisiológicos Bacterianos , Quimiotaxia , Microbiologia/história , Animais , História do Século XX , Humanos
18.
Protein Sci ; 20(11): 1856-66, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21858888

RESUMO

Sensory adaptation in bacterial chemotaxis involves reversible methylation of specific glutamyl residues on chemoreceptors. The reactions are catalyzed by a dedicated methyltransferase and dedicated methylesterase. In Escherichia coli and related organisms, control of these enzymes includes an evolutionarily recent addition of interaction with a pentapeptide activator located at the carboxyl terminus of the receptor polypeptide chain. Effective enzyme activation requires not only the pentapeptide but also a segment of the receptor polypeptide chain between that sequence and the coiled-coil body of the chemoreceptor. This segment has features consistent with a role as a flexible and presumably unstructured linker and enzyme tether, but there has been no direct information about its structure. We used site-directed spin labeling and electron paramagnetic resonance spectroscopy to characterize structural features of the carboxyl-terminal 40 residues of E. coli chemoreceptor Tar. Beginning ∼ 35 residues from the carboxyl terminus and continuing to the end of the protein, spectra of spin-labeled Tar embedded in native membranes or in reconstituted proteoliposomes, exhibited mobilities characteristic of unstructured, disordered segments. Binding of methyltransferase substantially reduced mobility for positions in or near the pentapeptide but mobility for the linker sequence remained high, being only modestly reduced in a gradient of decreasing effects for 10-15 residues, a pattern consistent with the linker providing a flexible arm that would allow enzyme diffusion within defined limits. Thus, our data identify that the carboxyl-terminal linker between the receptor body and the pentapeptide is an unstructured, disordered segment that can serve as a flexible arm and enzyme tether.


Assuntos
Quimiotaxia , Proteínas de Escherichia coli/química , Escherichia coli/química , Receptores de Superfície Celular/química , Sequência de Aminoácidos , Membrana Celular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/enzimologia , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Metiltransferases/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Proteolipídeos/química , Receptores de Superfície Celular/metabolismo , Análise de Sequência de Proteína , Marcadores de Spin
19.
Proc Natl Acad Sci U S A ; 108(23): 9390-5, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21606342

RESUMO

Bacterial chemoreceptors, histidine kinase CheA, and coupling protein CheW form clusters of chemotaxis signaling complexes. In signaling complexes kinase activity is enhanced several hundredfold and placed under receptor control. Activation is necessary to poise enzyme activity such that receptor control has physiologically relevant effects. Thus kinase activation can be considered the underlying core activity of signaling complexes. We defined the minimal physical unit that generates this activity using chemoreceptor Tar from Escherichia coli rendered water soluble by insertion into nanodiscs to (i) measure saturable binding of CheA and CheW to the smallest kinase-activating groups of receptor dimers and (ii) purify and characterize core units of signaling complexes. Purified complexes activated kinase almost as well as signaling complexes formed on arrays of receptors in isolated native membrane. Purified complexes contained two receptor trimers of dimers and two CheW for each CheA dimer, consistent with the approximately 1:1 CheACheW ratio determined by binding measurements. The 2:2:1 stoichiometry implied that CheA dimers, the enzymatically active form, connect two chemoreceptor trimers of dimers by interaction of one CheA protomer and a CheW with each trimer, an organization for which specific molecular interactions have previously been identified. The core unit associates six receptor dimers with a CheA dimer, providing sufficient capacity to account for much of the cooperativity and interdimer influence observed experimentally. We conclude that the 221 organization is the core structural and functional unit of chemotaxis signaling complexes and postulate that hexagonal arrays characteristic of signaling complexes are built from this unit.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/química , Ligação Competitiva , Células Quimiorreceptoras/química , Células Quimiorreceptoras/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Histidina Quinase , Cinética , Proteínas de Membrana/química , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Nanoestruturas/química , Nanotecnologia/métodos , Ligação Proteica , Multimerização Proteica , Receptores de Superfície Celular
20.
Mol Microbiol ; 79(3): 677-85, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21255111

RESUMO

Chemoreceptors are central to bacterial chemotaxis. These transmembrane homodimers form trimers of dimers. Trimers form clusters of a few to thousands of receptors. A crucial receptor function is 100-fold activation, in signalling complexes, of sensory histidine kinase CheA. Significant activation has been shown to require more than one receptor dimer but the number required for full activation was unknown. We investigated this issue using Nanodiscs, soluble, nanoscale (∼10 nm diameter) plugs of lipid bilayer, to limit the number of neighbouring receptors contributing to activation. Utilizing size-exclusion chromatography, we separated primary preparations of receptor-containing Nanodiscs, otherwise heterogeneous for number and orientation of inserted receptors, into fractions enriched for specific numbers of dimers per disc. Fractionated, clarified Nanodiscs carrying approximately five dimers per disc were as effective in activating kinase as native membrane vesicles containing many neighbouring dimers. At five independently inserted dimers per disc, every disc would have at least three dimers oriented in parallel and thus able act together as they would in native membrane. We conclude full kinase activation involves interaction of CheA with groups of three receptor dimers, presumably as a trimer of dimers, and that more extensive interactions among receptors are not necessary for full kinase activation.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Escherichia coli/citologia , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Multimerização Proteica , Proteínas de Bactérias/química , Fracionamento Químico , Ativação Enzimática , Proteínas de Escherichia coli , Histidina Quinase , Proteínas de Membrana/química , Proteínas Quimiotáticas Aceptoras de Metil , Nanoestruturas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...