Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172023, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547982

RESUMO

A comprehensive floc model for simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) was designed, incorporating polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), intrinsic half-saturation coefficients, and explicit external mass transfer terms. The calibrated model was able to effectively describe experimental data over a range of operating conditions. The estimated intrinsic half-saturation coefficients of oxygen values for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, ordinary heterotrophic organisms (OHOs), PAOs, and GAOs were set at 0.08, 0.18, 0.03, 0.07, and 0.1 mg/L, respectively. Simulation suggested that low dissolved oxygen (DO) environments favor K-strategist nitrifying bacteria and PAOs. In SNDPR, virtually all influent and fermentation-generated volatile fatty acids were assimilated as polyhydroxyalkanoates by PAOs in the anaerobic phase. In the aerobic phase, PAOs absorbed 997 % and 171 % of the benchmark influent total phosphorus mass loading through aerobic growth and denitrification via nitrite. These high percentages were because they were calculated relative to the influent total phosphorus, rather than total phosphorus at the end of the anaerobic period. When considering simultaneous nitrification and denitrification, about 23.1 % of influent total Kjeldahl nitrogen was eliminated through denitrification by PAOs and OHOs via nitrite, which reduced the need for both oxygen and carbon in nitrogen removal. Moreover, the microbial and DO profiles within the floc indicated a distinct stratification, with decreasing DO and OHOs, and increasing PAOs towards the inner layer. This study demonstrates a successful floc model that can be used to investigate and design SNDPR for scientific and practical purposes.


Assuntos
Desnitrificação , Nitrificação , Fósforo , Eliminação de Resíduos Líquidos , Fósforo/metabolismo , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Modelos Teóricos
2.
Environ Sci Pollut Res Int ; 30(60): 124780-124789, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36645591

RESUMO

A lab-scale granular sludge sequencing batch reactor (G-SBR) system was operated using synthetic wastewater. The total nitrogen removal efficiency of 85% was obtained together with the achievement of complete total phosphorus removal with average granule diameter of 400 µm. Dual-step nitrification and denitrification model with fixed biofilm thickness was used for performance analysis. The denitrification mode only contributed to TN removal with 25% which can be calculated with process stoichiometry. The remaining nitrogen removal could be explained by simulating simultaneous nitrification and denitrification which was responsible for 75% denitrification during aerobic period. In addition, low NO3- concentration at the beginning of the fill period provided advantage for securing a prolonged anaerobic period for enhanced biological phosphorus removal (EBPR). The model parameters of boundary layer thickness (zBL = 50 µm) and half-saturation of O2 for nitrite-oxidizing bacteria (KO2,NOB = 0.5 gO2/m3) were tuned to fit NO2 and NO3 profiles in SBR cycle.


Assuntos
Nitrificação , Esgotos , Esgotos/microbiologia , Desnitrificação , Reatores Biológicos/microbiologia , Fósforo , Nitrogênio/análise , Eliminação de Resíduos Líquidos
3.
Water Environ Res ; 94(3): e10694, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35243725

RESUMO

This study demonstrates the potential of an innovative anaerobic treatment technology for municipal biosolids (IntensiCarb), which relies on vacuum evaporation to decouple solids and hydraulic retention times (SRT and HRT). We present proof-of-concept experiments using primary sludge and thickened waste activated sludge (50-50 v/v mixture) as feed for fermentation and carbon upgrading with the IntensiCarb unit. IntensiCarb fully decoupled the HRT and SRT in continuously stirred anaerobic reactors (CSAR) to achieve two intensification factors, that is, 1.3 and 2, while keeping the SRT constant at 3 days (including in the control fermenter). The intensified CSARs were compared to a conventional control system to determine the yields of particulate hydrolysis, VFA production, and nitrogen partitioning between fermentate and condensate. The intensified CSAR operating at an intensification factor 2 achieved a 65% improvement in particulate solubilization. Almost 50% of total ammonia was extracted without pH adjustment, while carbon was retained in the fermentate. Based on these results, the IntensiCarb technology allows water resource recovery facilities to achieve a high degree of plant-wide intensification while partitioning nutrients into different streams and thickening solids. PRACTITIONER POINTS: The IntensiCarb reactor can decouple hydraulic (HRT) and solids (SRT) retention times in anaerobic systems while also increasing particulate hydrolysis and overall plant capacity. Using vacuum as driving force of the IntensiCarb technology, the system could achieve thickening, digestion, and partial dewatering in the same unit-thus eliminating the complexity of multi-stage biosolids treatment lines. The ability to partition nutrients between particulate, fermentate, and condensate assigns to the IntensiCarb unit a key role in recovery strategies for value-added products such as nitrogen, phosphorus, and carbon, which can be recovered separately and independently.

4.
Insects ; 11(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751511

RESUMO

Applying instrumental insemination in closely related honey bee colonies often leads to frequent lethality of offspring causing colony collapse. This is due to the peculiarities of honey bee reproductive biology, where the complementary sex determination (csd) gene drives sex determination within a haplodiploid system. Diploid drones containing homozygous genotypes are lethal. Tracking of csd alleles using molecular markers prevents this unwanted event in closed breeding programs. Our approach described here is based on high throughput sequencing (HTS) that provides more data than traditional molecular techniques and is capable of analysing sources containing multiple alleles, including diploid individuals as the bee queen. The approach combines HTS technique and clipping wings as a minimally invasive method to detect the complementary sex determiner (csd) alleles directly from honey bee queens. Furthermore, it might also be suitable for screening alleles of honey harvested from hives of a closed breeding facility. Data on alleles of the csd gene from different honey bee subspecies are provided. It might contribute to future databases that could potentially be used to track the origin of honey. With the help of tracking csd alleles, more focused crossings will be possible, which could in turn accelerate honey bee breeding programmes targeting increase tolerance against varroosis as well.

5.
Water Environ Res ; 79(5): 554-60, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17571846

RESUMO

The primary aim of our research was to investigate the applicability of activated sludge models (ASM) for aerobic thermophilic processes, especially autothermal thermophilic aerobic digestion (ATAD). The ASM3 model (Gujer et al., 1999) theoretically seems to be the most suitable, because storage plays an important role in a batch-feed cycle system like ATAD. The ASM3 model was extended with an activation step of the thermophilic organisms. This model was calibrated and verified by independent test results, demonstrating its ability to describe the process. The growth (microH = 26.04 day(-1)), storage (k(STO) = 20.39 day(-1)), hydrolysis (kH = 11.15 day(-1)) and decay rates (b 9H,O2) = 1.28 day(-1), b(STO,O2 = 1.10 day-1)) obtained from calibration are significantly higher at 55 degrees C than at mesophilic temperatures, justifying the faster metabolism at higher temperatures. An inert fraction of the biomass (characterized by the model parameter f(i) = 0.4) was found to be significantly greater than in the mesophilic case. This can be attributed to the lower diversity of the thermophilic species and thus to their narrower substrate spectra.


Assuntos
Biodegradação Ambiental , Modelos Biológicos , Esgotos , Temperatura , Eliminação de Resíduos Líquidos/métodos , Bactérias Aeróbias , Simulação por Computador , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...