Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(11): e202300055, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37051652

RESUMO

Flavin adenine dinucleotide (FAD) is an essential redox cofactor in cellular metabolism. The organic synthesis of FAD typically involves coupling flavin mononucleotide (FMN) with adenosine monophosphate, however, existing synthesis routes present limitations such as multiple steps, low yields, and/or difficult-to-obtain starting materials. In this study, we report the synthesis of FAD nucleobase analogues with guanine/cytosine/uracil in place of adenine and deoxyadenosine in place of adenosine using chemical and enzymatic approaches with readily available starting materials, achieved in 1-3 steps with moderate yields (10-57 %). We find that the enzymatic route using Methanocaldococcus jannaschii FMN adenylyltransferase (MjFMNAT) is versatile and can produce these FAD analogues in high yields. Further, we demonstrate that Escherichia coli glutathione reductase is capable of binding and using these analogues as cofactors. Finally, we show that FAD nucleobase analogues can be synthesized inside a cell from cellular substrates FMN and nucleoside triphosphates by the heterologous expression of MjFMNAT. This lays the foundation for their use in studying the molecular role of FAD in cellular metabolism and as biorthogonal reagents in biotechnology and synthetic biology.


Assuntos
Coenzimas , Flavina-Adenina Dinucleotídeo , Coenzimas/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Mononucleotídeo de Flavina/metabolismo , Oxirredução , Escherichia coli/metabolismo
2.
Curr Opin Struct Biol ; 77: 102490, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371846

RESUMO

Vitamin B12 is an essential biomolecule that assists in the catalysis of methyl transfer and radical-based reactions in cellular metabolism. The structure of B12 is characterized by a tetrapyrrolic corrin ring with a central cobalt ion coordinated with an upper ligand, and a lower ligand anchored via a nucleotide loop. Multiple methyl groups decorate B12, and their presence (or absence) have structural and functional consequences. In this minireview, we focus on the methyl groups that distinguish vitamin B12 from other tetrapyrrolic biomolecules and from its own naturally occurring analogues called cobamides. We draw information from recent advances in the field to understand the origins of these methyl groups and the enzymes that incorporate them, and discuss their biological significance.


Assuntos
Cobamidas , Vitamina B 12 , Vitamina B 12/metabolismo , Ligantes , Cobamidas/química , Cobamidas/metabolismo , Catálise , Vitaminas
3.
Methods Enzymol ; 668: 25-59, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589196

RESUMO

Enzymes catalyze a wide variety of reactions with exquisite precision under crowded conditions within cellular environments. When encountered with a choice of small molecules in their vicinity, even though most enzymes continue to be specific about the substrate they pick, some others are able to accept a range of substrates and subsequently produce a variety of products. The biosynthesis of Vitamin B12, an essential nutrient required by humans involves a multi-substrate α-phosphoribosyltransferase enzyme CobT that activates the lower ligand of B12. Vitamin B12 is a member of the cobamide family of cofactors which share a common tetrapyrrolic corrin scaffold with a centrally coordinated cobalt ion, and an upper and a lower ligand. The structural difference between B12 and other cobamides mainly arises from variations in the lower ligand, which is attached to the activated corrin ring by CobT and other downstream enzymes. In this chapter, we describe the steps involved in identifying and reconstituting the activity of new CobT homologs by deriving lessons from those previously characterized. We then highlight biochemical techniques to study the unique properties of these homologs. Finally, we describe a pairwise substrate competition assay to rank CobT substrate preference, a general method that can be applied for the study of other multi-substrate enzymes. Overall, the analysis with CobT provides insights into the range of cobamides that can be synthesized by an organism or a community, complementing efforts to predict cobamide diversity from complex metagenomic data.


Assuntos
Cobamidas , Vitamina B 12 , Cobamidas/química , Humanos , Ligantes , Vitamina B 12/química , Vitaminas
4.
J Bacteriol ; 204(4): e0050321, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35357164

RESUMO

Microbial communities occupy diverse niches in nature, and community members routinely exchange a variety of nutrients among themselves. While large-scale metagenomic and metabolomic studies shed some light on these exchanges, the contribution of individual species and the molecular details of specific interactions are difficult to track. In this study, we follow the exchange of vitamin B1 (thiamin) and its intermediates between microbes within synthetic cocultures of Escherichia coli and Vibrio anguillarum. Thiamin contains two moieties, 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 4-methyl-5-(2-hydroxyethyl)thiazole (THZ), which are synthesized by distinct pathways using enzymes ThiC and ThiG, respectively, and then coupled by ThiE to form thiamin. Even though E. coli ΔthiC, ΔthiE, and ΔthiG mutants are thiamin auxotrophs, we observed that cocultures of ΔthiC-ΔthiE and ΔthiC-ΔthiG mutants are able to grow in a thiamin-deficient medium, whereas the ΔthiE-ΔthiG coculture does not. Further, the exchange of thiamin and its intermediates in V. anguillarum cocultures and in mixed cocultures of V. anguillarum and E. coli revealed that there exist specific patterns for thiamin metabolism and exchange among these microbes. Our findings show that HMP is shared more frequently than THZ, concurrent with previous observations that free HMP and HMP auxotrophy is commonly found in various environments. Furthermore, we observe that the availability of exogenous thiamin in the media affects whether these strains interact with each other or grow independently. These findings collectively underscore the importance of the exchange of essential metabolites as a defining factor in building and modulating synthetic or natural microbial communities. IMPORTANCE Vitamin B1 (thiamin) is an essential nutrient for cellular metabolism. Microorganisms that are unable to synthesize thiamin either fully or in part exogenously obtain it from their environment or via exchanges with other microbial members in their community. In this study, we created synthetic microbial cocultures that rely on sharing thiamin and its biosynthesis intermediates and observed that some of them are preferentially exchanged. We also observed that the coculture composition is dictated by the production and/or availability of thiamin and its intermediates. Our studies with synthetic cocultures provide the molecular basis for understanding thiamin sharing among microorganisms and lay out broad guidelines for setting up synthetic microbial cocultures by using the exchange of an essential metabolite as their foundation.


Assuntos
Escherichia coli , Tiamina , Técnicas de Cocultura , Escherichia coli/genética , Escherichia coli/metabolismo , Nutrientes , Tiazóis/metabolismo , Vitaminas/metabolismo
5.
Chem Sci ; 12(39): 12939-12949, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34745524

RESUMO

Persulfides and polysulfides, collectively known as the sulfane sulfur pool along with hydrogen sulfide (H2S), play a central role in cellular physiology and disease. Exogenously enhancing these species in cells is an emerging therapeutic paradigm for mitigating oxidative stress and inflammation that are associated with several diseases. In this study, we present a unique approach of using the cell's own enzyme machinery coupled with an array of artificial substrates to enhance the cellular sulfane sulfur pool. We report the synthesis and validation of artificial/unnatural substrates specific for 3-mercaptopyruvate sulfurtransferase (3-MST), an important enzyme that contributes to sulfur trafficking in cells. We demonstrate that these artificial substrates generate persulfides in vitro as well as mediate sulfur transfer to low molecular weight thiols and to cysteine-containing proteins. A nearly 100-fold difference in the rates of H2S production for the various substrates is observed supporting the tunability of persulfide generation by the 3-MST enzyme/artificial substrate system. Next, we show that the substrate 1a permeates cells and is selectively turned over by 3-MST to generate 3-MST-persulfide, which protects against reactive oxygen species-induced lethality. Lastly, in a mouse model, 1a is found to significantly mitigate neuroinflammation in the brain tissue. Together, the approach that we have developed allows for the on-demand generation of persulfides in vitro and in vivo using a range of shelf-stable, artificial substrates of 3-MST, while opening up possibilities of harnessing these molecules for therapeutic applications.

6.
Biosci Rep ; 41(8)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34369556

RESUMO

The large diversity of organisms inhabiting various environmental niches on our planet are engaged in a lively exchange of biomolecules, including nutrients, hormones, and vitamins. In a quest to survive, organisms that we define as pathogens employ innovative methods to extract valuable resources from their host leading to an infection. One such instance is where plant-associated bacterial pathogens synthesize and deploy hormones or their molecular mimics to manipulate the physiology of the host plant. This commentary describes one such specific example-the mechanism of the enzyme AldA, an aldehyde dehydrogenase (ALDH) from the bacterial plant pathogen Pseudomonas syringae which produces the plant auxin hormone indole-3-acetic acid (IAA) by oxidizing the substrate indole-3-acetaldehyde (IAAld) using the cofactor nicotinamide adenine dinucleotide (NAD+) (Bioscience Reports (2020) 40(12), https://doi.org/10.1042/BSR20202959). Using mutagenesis, enzyme kinetics, and structural analysis, Zhang et al. established that the progress of the reaction hinges on the formation of two distinct conformations of NAD(H) during the reaction course. Additionally, a key mutation in the AldA active site 'aromatic box' changes the enzyme's preference for an aromatic substrate to an aliphatic one. Our commentary concludes that such molecular level investigations help to establish the nature of the dynamics of NAD(H) in ALDH-catalyzed reactions, and further show that the key active site residues control substrate specificity. We also contemplate that insights from the present study can be used to engineer novel ALDH enzymes for environmental, health, and industrial applications.


Assuntos
Ácidos Indolacéticos , Indóis , Aldeído Oxirredutases , Virulência
7.
Front Plant Sci ; 11: 599, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547572

RESUMO

Efforts to boost crop yield and meet global food demands while striving to reach sustainability goals are hindered by the increasingly severe impacts of abiotic stress, such as drought. One strategy for alleviating drought stress in crops is to utilize root-associated bacteria, yet knowledge concerning the relationship between plant hosts and their microbiomes during drought remain under-studied. One broad pattern that has recently been reported in a variety of monocot and dicot species from both native and agricultural environments, is the enrichment of Actinobacteria within the drought-stressed root microbiome. In order to better understand the causes of this phenomenon, we performed a series of experiments in millet plants to explore the roles of drought severity, drought localization, and root development in provoking Actinobacteria enrichment within the root endosphere. Through 16S rRNA amplicon-based sequencing, we demonstrate that the degree of drought is correlated with levels of Actinobacterial enrichment in four species of millet. Additionally, we demonstrate that the observed drought-induced enrichment of Actinobacteria occurs along the length of the root, but the response is localized to portions of the root experiencing drought. Finally, we demonstrate that Actinobacteria are depleted in the dead root tissue of Japanese millet, suggesting saprophytic activity is not the main cause of observed shifts in drought-treated root microbiome structure. Collectively, these results help narrow the list of potential causes of drought-induced Actinobacterial enrichment in plant roots by showing that enrichment is dependent upon localized drought responses but not root developmental stage or root death.

8.
J Biol Chem ; 295(31): 10522-10534, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32503839

RESUMO

Vitamin B12 and other cobamides are essential cofactors required by many organisms and are synthesized by a subset of prokaryotes via distinct aerobic and anaerobic routes. The anaerobic biosynthesis of 5,6-dimethylbenzimidazole (DMB), the lower ligand of vitamin B12, involves five reactions catalyzed by the bza operon gene products, namely the hydroxybenzimidazole synthase BzaAB/BzaF, phosphoribosyltransferase CobT, and three methyltransferases, BzaC, BzaD, and BzaE, that conduct three distinct methylation steps. Of these, the methyltransferases that contribute to benzimidazole lower ligand diversity in cobamides remain to be characterized, and the precise role of the bza operon protein CobT is unclear. In this study, we used the bza operon from the anaerobic bacterium Moorella thermoacetica (comprising bzaA-bzaB-cobT-bzaC) to examine the role of CobT and investigate the activity of the first methyltransferase, BzaC. We studied the phosphoribosylation catalyzed by MtCobT and found that it regiospecifically activates 5-hydroxybenzimidazole (5-OHBza) to form the 5-OHBza-ribotide (5-OHBza-RP) isomer as the sole product. Next, we characterized the domains of MtBzaC and reconstituted its methyltransferase activity with the predicted substrate 5-OHBza and with two alternative substrates, the MtCobT product 5-OHBza-RP and its riboside derivative 5-OHBza-R. Unexpectedly, we found that 5-OHBza-R is the most favored MtBzaC substrate. Our results collectively explain the long-standing observation that the attachment of the lower ligand in anaerobic cobamide biosynthesis is regiospecific. In conclusion, we validate MtBzaC as a SAM:hydroxybenzimidazole-riboside methyltransferase (HBIR-OMT). Finally, we propose a new pathway for the synthesis and activation of the benzimidazolyl lower ligand in anaerobic cobamide biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Benzimidazóis/metabolismo , Cobamidas/biossíntese , Metiltransferases/metabolismo , Moorella/metabolismo , Pentosiltransferases/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Cobamidas/genética , Metilação , Metiltransferases/genética , Moorella/genética , Pentosiltransferases/genética
9.
Biochemistry ; 57(11): 1748-1757, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29457884

RESUMO

Vitamin B12 (cobalamin) is an essential micronutrient for humans that is synthesized by only a subset of bacteria and archaea. The aerobic biosynthesis of 5,6-dimethylbenzimidazole, the lower axial ligand of cobalamin, is catalyzed by the "flavin destructase" enzyme BluB, which fragments reduced flavin mononucleotide following its reaction with oxygen to yield this ligand. BluB is similar in sequence and structure to members of the flavin oxidoreductase superfamily, yet the flavin destruction process has remained elusive. Using stopped-flow spectrophotometry, we find that the flavin destructase reaction of BluB from Sinorhizobium meliloti is initiated with canonical flavin-O2 chemistry. A C4a-peroxyflavin intermediate is rapidly formed in BluB upon reaction with O2, and has properties similar to those of flavin-dependent hydroxylases. Analysis of reaction mixtures containing flavin analogues indicates that both formation of the C4a-peroxyflavin and the subsequent destruction of the flavin to form 5,6-dimethylbenzimidazole are influenced by the electronic properties of the flavin isoalloxazine ring. The flavin destruction phase of the reaction, which results from the decay of the C4a-peroxyflavin intermediate, occurs more efficiently at pH >7.5. Furthermore, the BluB mutants D32N and S167G are specifically impaired in the flavin destruction phase of the reaction; nevertheless, both form the C4a-peroxyflavin nearly quantitatively. Coupled with a phylogenetic analysis of BluB and related flavin-dependent enzymes, these results demonstrate that the BluB flavin destructase family can be identified by the presence of active site residues D32 and S167.


Assuntos
Proteínas de Bactérias/química , Dinitrocresóis/química , Flavoproteínas/química , Oxigenases de Função Mista/química , Sinorhizobium meliloti/enzimologia , Proteínas de Bactérias/metabolismo , Dinitrocresóis/metabolismo , Flavoproteínas/metabolismo , Oxigenases de Função Mista/metabolismo , Filogenia
10.
J Am Chem Soc ; 137(33): 10444-7, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26237670

RESUMO

Comparative genomics of the bacterial thiamin pyrimidine synthase (thiC) revealed a paralogue of thiC (bzaF) clustered with anaerobic vitamin B12 biosynthetic genes. Here we demonstrate that BzaF is a radical S-adenosylmethionine enzyme that catalyzes the remarkable conversion of aminoimidazole ribotide (AIR) to 5-hydroxybenzimidazole (5-HBI). We identify the origin of key product atoms and propose a reaction mechanism. These studies represent the first step in solving a long-standing problem in anaerobic vitamin B12 assembly and reveal an unanticipated intersection of thiamin and vitamin B12 biosynthesis.


Assuntos
Benzimidazóis/metabolismo , Ribonucleotídeos/metabolismo , Tiamina/biossíntese , Vitamina B 12/biossíntese , Anaerobiose , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Modelos Moleculares , Conformação Proteica
11.
Proc Natl Acad Sci U S A ; 112(34): 10792-7, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26246619

RESUMO

Vitamin B12 (cobalamin) is required by humans and other organisms for diverse metabolic processes, although only a subset of prokaryotes is capable of synthesizing B12 and other cobamide cofactors. The complete aerobic and anaerobic pathways for the de novo biosynthesis of B12 are known, with the exception of the steps leading to the anaerobic biosynthesis of the lower ligand, 5,6-dimethylbenzimidazole (DMB). Here, we report the identification and characterization of the complete pathway for anaerobic DMB biosynthesis. This pathway, identified in the obligate anaerobic bacterium Eubacterium limosum, is composed of five previously uncharacterized genes, bzaABCDE, that together direct DMB production when expressed in anaerobically cultured Escherichia coli. Expression of different combinations of the bza genes revealed that 5-hydroxybenzimidazole, 5-methoxybenzimidazole, and 5-methoxy-6-methylbenzimidazole, all of which are lower ligands of cobamides produced by other organisms, are intermediates in the pathway. The bza gene content of several bacterial and archaeal genomes is consistent with experimentally determined structures of the benzimidazoles produced by these organisms, indicating that these genes can be used to predict cobamide structure. The identification of the bza genes thus represents the last remaining unknown component of the biosynthetic pathway for not only B12 itself, but also for three other cobamide lower ligands whose biosynthesis was previously unknown. Given the importance of cobamides in environmental, industrial, and human-associated microbial metabolism, the ability to predict cobamide structure may lead to an improved ability to understand and manipulate microbial metabolism.


Assuntos
Benzimidazóis/metabolismo , Eubacterium/metabolismo , Vitamina B 12/biossíntese , Anaerobiose , Archaea/genética , Archaea/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corrinoides/biossíntese , DNA Recombinante/genética , Escherichia coli/metabolismo , Eubacterium/genética , Genes Arqueais , Genes Bacterianos , Geobacter/genética , Geobacter/metabolismo , Redes e Vias Metabólicas , Dados de Sequência Molecular , Estrutura Molecular , Moorella/genética , Moorella/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Riboswitch/genética , Salmonella typhimurium/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
12.
ISME J ; 9(6): 1295-305, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25405978

RESUMO

We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.


Assuntos
Cloratos/química , Nitratos/química , Percloratos/química , Sulfatos/química , Elementos de DNA Transponíveis , Desulfovibrio/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Mutação , Oxirredução , Reação em Cadeia da Polimerase , Proteômica , RNA Ribossômico 16S/metabolismo , Sulfetos/química , Bactérias Redutoras de Enxofre/metabolismo
13.
Biochemistry ; 53(49): 7805-15, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25412146

RESUMO

Cobamides, which include vitamin B12 (cobalamin), are a class of modified tetrapyrroles synthesized exclusively by prokaryotes that function as cofactors for diverse biological processes. Cobamides contain a centrally bound cobalt ion that coordinates to upper and lower axial ligands. The lower ligand is covalently linked to a phosphoribosyl moiety through an alpha-glycosidic bond formed by the CobT enzyme. CobT can catalyze the phosphoribosylation of a variety of substrates. We investigated the ability of CobT to act on either of two nitrogen atoms within a single, asymmetric benzimidazole substrate to form two isomeric riboside phosphate products. Reactions containing asymmetric benzimidazoles as substrates for homologues of CobT from different bacteria resulted in the production of distinct ratios of two isomeric products, with some CobT homologues favoring the production of a single isomer and others forming a mixture of products. These preferences were reflected in the production of cobamide isomers with lower ligands attached in different orientations, some of which are novel cobamides that have not been characterized previously. Two isomers of methoxybenzimidazolylcobamide were found to be unequal in their ability to support ethanolamine ammonia-lyase dependent growth in Salmonella enterica, suggesting that CobT's regiospecificity could be biologically important. We also observed differences in pKa, which can influence the reactivity of the cofactor and could contribute to these distinct biological activities. Relaxed regiospecificity was achieved by introducing a single point mutation in an active site residue of CobT. These new cobamide isomers could be used to probe the mechanisms of cobamide-dependent enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Biocatálise , Cobamidas/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/metabolismo , Pentosiltransferases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Cobamidas/química , Cinética , Ligantes , Estrutura Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Pentosiltransferases/química , Pentosiltransferases/genética , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/enzimologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Sinorhizobium meliloti/enzimologia , Especificidade da Espécie , Estereoisomerismo , Especificidade por Substrato , Veillonella/enzimologia
14.
Chem Biol ; 20(10): 1275-85, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24055005

RESUMO

Cobamides such as vitamin B12 (cobalamin) are produced exclusively by prokaryotes and used by many other organisms as cofactors for diverse metabolic processes. Cobamides are cobalt-containing tetrapyrroles with upper and lower axial ligands. The structure of the lower ligand varies in cobamides produced by different bacteria. We investigated the biochemical basis of this structural variability by exploring the reactivity of homologs of CobT, the enzyme responsible for activating lower ligand bases for incorporation into cobamides. Our results show that CobT enzymes can activate a range of lower ligand substrates, and the majority of the enzymes tested preferentially attach 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin. This suggests that many bacteria that synthesize cobamides other than cobalamin in pure culture may produce cobalamin in mixed communities by attaching DMB when it is available in the environment.


Assuntos
Bactérias/enzimologia , Benzimidazóis/metabolismo , Cobamidas/análogos & derivados , Cobamidas/metabolismo , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/metabolismo , Pentosiltransferases/metabolismo , Homologia Estrutural de Proteína , Vitamina B 12/metabolismo , Benzimidazóis/química , Ligação Competitiva , Cobamidas/química , Ligantes , Complexos Multienzimáticos/química , Nucleotidiltransferases/química , Pentosiltransferases/química , Reprodutibilidade dos Testes , Ribonucleosídeos/metabolismo , Sinorhizobium meliloti/enzimologia , Especificidade por Substrato , Vitamina B 12/química
15.
Chem Biol ; 20(10): 1265-74, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24055007

RESUMO

Cobamides are members of the vitamin B12 family of cofactors that function in a variety of metabolic processes and are synthesized only by prokaryotes. Cobamides produced by different organisms vary in the structure of the lower axial ligand. Here we explore the molecular factors that control specificity in the incorporation of lower ligand bases into cobamides. We find that the cobT gene product, which activates lower ligand bases for attachment, limits the range of lower ligand bases that can be incorporated by bacteria. Furthermore, we demonstrate that the substrate specificity of CobT can be predictably altered by changing two active site residues. These results demonstrate that sequence variations in cobT homologs contribute to cobamide structural diversity. This analysis could open new routes to engineering specific cobamide production and understanding cobamide-dependent processes.


Assuntos
Cobamidas/química , Cobamidas/metabolismo , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/metabolismo , Pentosiltransferases/metabolismo , Sequência de Aminoácidos , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Ligantes , Viabilidade Microbiana , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Mutação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Pentosiltransferases/química , Pentosiltransferases/genética , Filogenia , Homologia de Sequência , Especificidade por Substrato
16.
J Am Chem Soc ; 133(24): 9311-9, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21534620

RESUMO

In many bacteria tenI is found clustered with genes involved in thiamin thiazole biosynthesis. However, while TenI shows high sequence similarity with thiamin phosphate synthase, the purified protein has no thiamin phosphate synthase activity, and the role of this enzyme in thiamin biosynthesis remains unknown. In this contribution, we identify the function of TenI as a thiazole tautomerase, describe the structure of the enzyme complexed with its reaction product, identify the substrates phosphate and histidine 122 as the acid/base residues involved in catalysis, and propose a mechanism for the reaction. The identification of the function of TenI completes the identification of all of the enzymes needed for thiamin biosynthesis by the major bacterial pathway.


Assuntos
Isomerases/metabolismo , Tiamina/metabolismo , Tiazóis/metabolismo , Alquil e Aril Transferases/metabolismo , Bacillus subtilis/enzimologia , Biocatálise , Domínio Catalítico , Isomerases/química , Cinética , Modelos Moleculares , Tiamina/química , Tiazóis/química
18.
Chem Commun (Camb) ; (6): 622-4, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17264911

RESUMO

The spontaneous activation of a nonaromatic enediynyl azide under ambient conditions has been demonstrated. The aromatic enediyne followed the expected cycloaddition with the alkene in the neighbouring arm to form a stable bridged bicyclic enediyne.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...