Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38410426

RESUMO

Most Plasmodium vivax infections contain genetically distinct parasites, but the consequences of this polyclonality on the development of asexual parasites, their sexual differentiation, and their transmission remain unknown. We describe infections of Saimiri monkeys with two strains of P. vivax and the analyses of 117,350 parasites characterized by single cell RNA sequencing and individually genotyped. In our model, consecutive inoculations fail to establish polyclonal infections. By contrast, simultaneous inoculations of two strains lead to sustained polyclonal infections, although without detectable differences in parasite regulation or sexual commitment. Analyses of sporozoites dissected from mosquitoes fed on coinfected monkeys show that all genotypes are successfully transmitted to mosquitoes. However, after sporozoite inoculation, not all genotypes contribute to the subsequent blood infections, highlighting an important bottleneck during pre-erythrocytic development. Overall, these studies provide new insights on the mechanisms regulating the establishment of polyclonal P. vivax infections and their consequences for disease transmission.

2.
PLoS Negl Trop Dis ; 16(12): e0010991, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36525464

RESUMO

Plasmodium vivax infections often consist of heterogenous populations of parasites at different developmental stages and with distinct transcriptional profiles, which complicates gene expression analyses. The advent of single cell RNA sequencing (scRNA-seq) enabled disentangling this complexity and has provided robust and stage-specific characterization of Plasmodium gene expression. However, scRNA-seq information is typically derived from the end of each mRNA molecule (usually the 3'-end) and therefore fails to capture the diversity in transcript isoforms documented in bulk RNA-seq data. Here, we describe the sequencing of scRNA-seq libraries using Pacific Biosciences (PacBio) chemistry to characterize full-length Plasmodium vivax transcripts from single cell parasites. Our results show that many P. vivax genes are transcribed into multiple isoforms, primarily through variations in untranslated region (UTR) length or splicing, and that the expression of many isoforms is developmentally regulated. Our findings demonstrate that long read sequencing can be used to characterize mRNA molecules at the single cell level and provides an additional resource to better understand the regulation of gene expression throughout the Plasmodium life cycle.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Plasmodium vivax/genética , Isoformas de Proteínas/genética , Perfilação da Expressão Gênica , RNA-Seq , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala
3.
Med Sci (Basel) ; 8(4)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992571

RESUMO

Pre-hospital treatment of traumatic brain injury (TBI) with co-existing polytrauma is complicated by requirements for intravenous fluid volume vs. hypotensive resuscitation. A low volume, small particle-size-oxygen-carrier perfluorocarbon emulsion NVX-428 (dodecafluoropentane emulsion; 2% w/v) could improve brain tissue with minimal additional fluid volume. This study examined whether the oxygen-carrier NVX-428 shows safety and efficacy for pre-hospital treatment of TBI. Anesthetized swine underwent fluid percussion injury TBI and received 1 mL/kg IV NVX-428 (TBI-NVX) at 15 min (T15) or normal saline (no-treatment) (TBI-NON). Similarly, uninjured swine received NVX-428 (SHAM-NVX) or normal saline (SHAM-NON). Animals were monitored and measurements were taken for physiological and neurological parameters before euthanasia at the six-hour mark (T360). Histopathological analysis was performed on paraffin embedded tissues. Physiological, biochemical and blood gas parameters were not different, with the exception of a significant but transient increase in mean pulmonary artery pressure observed in the TBI-experimental group immediately after drug administration. There were no initial differences in brain oxygenation at baseline, but over time oxygen decreased ~50% in both TBI groups. Histological brain injury scores were similar between TBI-NVX and TBI-NON, although a number of subcategories (spongiosis-ischemic/dead neurons-hemorrhage-edema) in TBI-NVX had a tendency for lower scores. The cerebellum showed significantly lower spongiosis and ischemic/dead neuron injury scores and a lower number of Fluoro-Jade-B-positive cerebellar-Purkinje-cells after NVX-428 treatment compared to controls. NVX-428 may assist in mitigating secondary cellular brain damage.

4.
J Trauma Acute Care Surg ; 86(1): 116-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985235

RESUMO

BACKGROUND: Aeromedical evacuation to definitive care is standard in current military conflicts. However, there is minimal knowledge on the effects of hypobaria (HYPO) on either the flight crew or patients. The effects of HYPO were investigated using healthy swine. METHODS: Anesthetized Yorkshire swine underwent a simulated 4 h "transport" to an altitude of 2,441 m (8,000 feet.; HYPO, N = 6) or at normobaric conditions (NORMO, N = 6). Physiologic and biochemical data were collected. Organ damage was assessed for hemorrhage, inflammation, edema, necrosis, and for lungs only, microatelectasis. RESULTS: All parameters were similar prior to and after "transport" with no significant effects of HYPO on hemodynamic, neurologic, or oxygen transport parameters, nor on blood gas, chemistry, or complete blood count data. However, the overall Lung Injury Score was significantly worse in the HYPO than the NORMO group (10.78 ± 1.22 vs. 2.31 ± 0.71, respectively) with more edema/fibrin/hemorrhage in the subpleural, interlobular and alveolar space, more congestion in alveolar septa, and evidence of microatelectasis (vs. no microatelectasis in the NORMO group). There was also increased severity of pulmonary neutrophilic (1.69 ± 0.20 vs. 0.19 ± 0.13) and histiocytic inflammation (1.83 ± 0.23 vs. 0.47 ± 0.17) for HYPO versus NORMO, respectively. On the other hand, there was increased renal inflammation in NORMO compared with HYPO (1.00 ± 0.13 vs. 0.33 ± 0.17, respectively). There were no histopathological differences in brain (whole or individual regions), liver, pancreas, or adrenals. CONCLUSION: Hypobaria, itself, may have an adverse effect on the respiratory system, even in healthy individuals, and this may be superimposed on combat casualties where there may be preexisting lung injury. The additional effects of anesthesia and controlled ventilation on these results are unknown, and further studies are indicated using awake models to better characterize the mechanisms for this pathology and the factors that influence its severity.


Assuntos
Resgate Aéreo/estatística & dados numéricos , Barotrauma/complicações , Encéfalo/patologia , Pulmão/patologia , Altitude , Animais , Pressão Atmosférica , Gasometria/métodos , Lesões Encefálicas/etiologia , Modelos Animais de Doenças , Edema/patologia , Feminino , Hemodinâmica/fisiologia , Hemorragia/patologia , Inflamação/imunologia , Inflamação/patologia , Lesão Pulmonar/etiologia , Masculino , Necrose/patologia , Atelectasia Pulmonar/patologia , Suínos
5.
J Trauma Acute Care Surg ; 81(1): 101-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26998778

RESUMO

BACKGROUND: There is inadequate information on the physiologic effects of aeromedical evacuation on wounded war fighters with traumatic brain injury (TBI). At altitudes of 8,000 ft, the inspired oxygen is lower than standard sea level values. In troops experiencing TBI, this reduced oxygen may worsen or cause secondary brain injury. We tested the hypothesis that the effects of prolonged aeromedical evacuation on critical neurophysiologic parameters (i.e., brain oxygenation [PbtO2]) of swine with a fluid percussion injury/TBI would be detrimental compared with ground (normobaric) transport. METHODS: Yorkshire swine underwent fluid percussion injury/TBI with pretransport stabilization before being randomized to a 4-hour aeromedical transport at simulated flight altitude of 8,000 ft (HYPO, n = 8) or normobaric ground transport (NORMO, n = 8). Physiologic measurements (i.e., PbtO2, cerebral perfusion pressure, intracranial pressure, regional cerebral blood flow, mean arterial blood pressure, and oxygen transport variables) were analyzed. RESULTS: Survival was equivalent between groups. Measurements were similar in both groups at all phases up to and including onset of flight. During the flight, PbtO2, cerebral perfusion pressure, and mean arterial blood pressure were significantly lower in the HYPO than in the NORMO group. At the end of flight, regional cerebral blood flow was lower in the HYPO than in the NORMO group. Other parameters such as intracranial pressure, cardiac output, and mean pulmonary artery pressure were not significantly different between the two groups. CONCLUSION: A 4-hour aeromedical evacuation at a simulated flight altitude of 8,000 ft caused a notable reduction in neurophysiologic parameters compared with normobaric conditions in this TBI swine model. Results suggest that hypobaric conditions exacerbate cerebral hypoxia and may worsen TBI in casualties already in critical condition.


Assuntos
Resgate Aéreo , Altitude , Lesões Encefálicas Traumáticas/fisiopatologia , Hipóxia Encefálica/fisiopatologia , Animais , Lesões Encefálicas Traumáticas/mortalidade , Débito Cardíaco , Circulação Cerebrovascular , Modelos Animais de Doenças , Hipóxia Encefálica/mortalidade , Pressão Intracraniana , Oxigênio/sangue , Distribuição Aleatória , Taxa de Sobrevida , Suínos
6.
Brain Res ; 1634: 132-139, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26794250

RESUMO

BACKGROUND: Hypoxia is a critical secondary injury mechanism in traumatic brain injury (TBI), and early intervention to alleviate post-TBI hypoxia may be beneficial. NVX-108, a dodecafluoropentane perfluorocarbon, was screened for its ability to increase brain tissue oxygen tension (PbtO2) when administered soon after TBI. METHODS: Ketamine-acepromazine anesthetized rats ventilated with 40% oxygen underwent moderate controlled cortical impact (CCI)-TBI at time 0 (T0). Rats received either no treatment (NON, n=8) or 0.5 ml/kg intravenous (IV) NVX-108 (NVX, n=9) at T15 (15 min after TBI) and T75. RESULTS: Baseline cortical PbtO2 was 28±3 mm Hg and CCI-TBI resulted in a 46±6% reduction in PbtO2 at T15 (P<0.001). Significant differences in time-group interactions (P=0.013) were found when comparing either absolute or percentage change of PbtO2 to post-injury (mixed-model ANOVA) suggesting that administration of NVX-108 increased PbtO2 above injury levels while it remained depressed in the NON group. Specifically in the NVX group, PbtO2 increased to a peak 143% of T15 (P=0.02) 60 min after completion of NVX-108 injection (T135). Systemic blood pressure was not different between the groups. CONCLUSION: NVX-108 caused an increase in PbtO2 following CCI-TBI in rats and should be evaluated further as a possible immediate treatment for TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Fluorocarbonos/administração & dosagem , Hipóxia/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Córtex Cerebral/lesões , Frequência Cardíaca/efeitos dos fármacos , Hipóxia/etiologia , Hipóxia/prevenção & controle , Masculino , Pressão Parcial , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...