Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cancer Lett ; 585: 216674, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38280480

RESUMO

Metastasis is the main culprit of cancer-related death and account for the poor prognosis of hepatocellular carcinoma. Although platelets have been shown to accelerate tumor cell metastasis, the exact mechanism remained to be fully understood. Here, we found that high blood platelet counts and increased tumor tissue ADAM10 expression indicated the poor prognosis of HCC patients. Meanwhile, blood platelet count has positive correlation with tumor tissue ADAM10 expression. In vitro, we revealed that platelet increased ADAM10 expression in tumor cell through TLR4/NF-κB signaling pathway. ADAM10 catalyzed the shedding of CX3CL1 which bound to CX3CR1 receptor, followed by inducing epithelial to mesenchymal transition and activating RhoA signaling in cancer cells. Moreover, knockdown HCC cell TLR4 (Tlr4) or inhibition of ADAM10 prevented platelet-increased tumor cell migration, invasion and endothelial permeability. In vivo, we further verified in mice lung metastatic model that platelet accelerated tumor metastasis via cancer cell TLR4/ADAM10/CX3CL1 axis. Overall, our study provides new insights into the underlying mechanism of platelet-induced HCC metastasis. Therefore, targeting the TLR4/ADAM10/CX3CL1 axis in cancer cells hold promise for the inhibition of platelet-promoted lung metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Receptor 4 Toll-Like/metabolismo , Neoplasias Hepáticas/patologia , Transição Epitelial-Mesenquimal , Transdução de Sinais , Proteína ADAM10/metabolismo , Movimento Celular , Linhagem Celular Tumoral , Metástase Neoplásica , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Quimiocina CX3CL1
2.
Neuro Oncol ; 26(1): 85-99, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37616578

RESUMO

BACKGROUND: Glioblastomas are universally lethal brain tumors containing tumor-propagating glioblastoma stem cells (GSCs). EGFR gene amplification or mutation is frequently detected in GBMs and is associated with poor prognosis. However, EGFR variants in GSCs and their role in the maintenance of GSCs and progression of GBM are unclear. METHODS: EGFR variants were detected through bioinformatic HISAT-StringTie-Ballgown pipeline and verified through 5' RACE, RT-PCR, ribonuclease protection, and northern blotting assays. EGFRx function was investigated through neurosphere, cell viability, intracranial xenograft and RNA-seq assays. EGFRx-STAT5 signaling was investigated through western blotting, coimmunoprecipitation, immunofluorescence, luciferase reporter, RT-PCR and CUT&Tag assays. RESULTS: We identified a novel EGFR variant (EGFRx), that is specifically expressed in GSCs. Unlike the EGFRvIII variant, which lacks exons 2-7, EGFRx is characterized by the absence of exons 2-14, and encodes an EGFR protein that does not possess the entire extracellular ligand-binding domain. We observed that EGFRx exhibits significant glycosylation, is required for GSC self-renewal, proliferation, and tumorigenesis, and highly active in glioblastomas compared to normal brain tissue. Mechanistically, EGFRx constitutively and specifically activates STAT5 in GSCs through spontaneous asymmetric dimerization of the kinase domain. CONCLUSIONS: EGFRx plays essential roles in the maintenance of the GSC phenotype through constitutive activation of STAT5 and promotes GBM progression, suggesting that EGFRx-STAT5 signaling represents a promising therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transdução de Sinais , Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
3.
Mol Neurobiol ; 60(12): 7285-7296, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548854

RESUMO

The inhibitory neurons in the brain play an essential role in neural network firing patterns by releasing γ-aminobutyric acid (GABA) as the neurotransmitter. In the mouse brain, based on the protein molecular markers, inhibitory neurons are usually to be divided into three non-overlapping groups: parvalbumin (PV), neuropeptide somatostatin (SST), and vasoactive intestinal peptide (VIP)-expressing neurons. Each neuronal group exhibited unique properties in molecule, electrophysiology, circuitry, and function. Calbindin 1 (Calb1), a ubiquitous calcium-binding protein, often acts as a "divider" in excitatory neuronal classification. Based on Calb1 expression, the excitatory neurons from the same brain region can be classified into two subgroups with distinct properties. Besides excitatory neurons, Calb1 also expresses in part of inhibitory neurons. But, to date, little research focused on the intersectional relationship between inhibitory neuronal subtypes and Calb1. In this study, we genetically targeted Calb1-expression (Calb1+) and Calb1-lacking (Calb1-) subgroups of PV and SST neurons throughout the mouse brain by flexibly crossing transgenic mice relying on multi-recombinant systems, and the distribution patterns and electrophysiological properties of each subgroup were further demonstrated. Thus, this study provided novel insights and strategies into inhibitory neuronal classification.


Assuntos
Encéfalo , Redes Neurais de Computação , Animais , Camundongos , Calbindina 1 , Camundongos Transgênicos , Neurônios , Parvalbuminas
4.
Cell Mol Neurobiol ; 43(7): 3743-3752, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37405550

RESUMO

Retrograde tracing is an important method for dissecting neuronal connections and mapping neural circuits. Over the past decades, several virus-based retrograde tracers have been developed and have contributed to display multiple neural circuits in the brain. However, most of the previously widely used viral tools have focused on mono-transsynaptic neural tracing within the central nervous system, with very limited options for achieving polysynaptic tracing between the central and peripheral nervous systems. In this study, we generated a novel mouse line, GT mice, in which both glycoprotein (G) and ASLV-A receptor (TVA) were expressed throughout the body. Using this mouse model, in combination with the well-developed rabies virus tools (RABV-EnvA-ΔG) for monosynaptic retrograde tracing, polysynaptic retrograde tracing can be achieved. This allows functional forward mapping and long-term tracing. Furthermore, since the G-deleted rabies virus can travel upstream against the nervous system as the original strain, this mouse model can also be used for rabies pathological studies. Schematic illustrations about the application principles of GT mice in polysynaptic retrograde tracing and rabies pathological research.


Assuntos
Vírus da Raiva , Raiva , Animais , Camundongos , Vírus da Raiva/fisiologia , Neurônios/fisiologia , Encéfalo , Rede Nervosa
5.
Sci China Life Sci ; 65(8): 1590-1607, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35089530

RESUMO

The raphe nucleus is critical for feeding, rewarding and memory. However, how the heterogenous raphe neurons are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing VGLUT3. VGLUT3 neurons control the efficacy of spatial memory retrieval by synapsing directly with parvalbumin-expressing GABA interneurons (PGIs) in the dentate gyrus. In a mouse model of Alzheimer's disease (AD mice), VGLUT3→PGIs synaptic transmission is impaired by ETV4 inhibition of VGLUT3 transcription. ETV4 binds to a promoter region of VGLUT3 and activates VGLUT3 transcription in VGLUT3 neurons. Strengthening VGLUT3→PGIs synaptic transmission by ETV4 activation of VGLUT3 transcription upscales the efficacy of spatial memory retrieval in AD mice. This study reports a novel circuit and molecular mechanism underlying the efficacy of spatial memory retrieval via ETV4 inhibition of VGLUT3 transcription and hence provides a promising target for therapeutic intervention of the disease progression.


Assuntos
Memória Espacial , Proteínas Vesiculares de Transporte de Glutamato , Animais , Camundongos , Neurônios/metabolismo , Núcleos da Rafe , Transmissão Sináptica , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
6.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35014624

RESUMO

Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neurodevelopmental disorders. However, the neuropathogenesis remains largely elusive due to a lack of informative animal models. In this study, we developed a congenital murine CMV (cMCMV) infection mouse model with high survival rate and long survival period that allowed long-term follow-up study of neurodevelopmental disorders. This model involves in utero intracranial injection and mimics many reported clinical manifestations of cCMV infection in infants, including growth restriction, hearing loss, and impaired cognitive and learning-memory abilities. We observed that abnormalities in MRI/CT neuroimaging were consistent with brain hemorrhage and loss of brain parenchyma, which was confirmed by pathological analysis. Neuropathological findings included ventriculomegaly and cortical atrophy associated with impaired proliferation and migration of neural progenitor cells in the developing brain at both embryonic and postnatal stages. Robust inflammatory responses during infection were shown by elevated inflammatory cytokine levels, leukocyte infiltration, and activation of microglia and astrocytes in the brain. Pathological analyses and CT neuroimaging revealed brain calcifications induced by cMCMV infection and cell death via pyroptosis. Furthermore, antiviral treatment with ganciclovir significantly improved neurological functions and mitigated brain damage as shown by CT neuroimaging. These results demonstrate that this model is suitable for investigation of mechanisms of infection-induced brain damage and long-term studies of neurodevelopmental disorders, including the development of interventions to limit CNS damage associated with cCMV infection.


Assuntos
Infecções por Citomegalovirus , Modelos Animais de Doenças , Neuroimagem , Animais , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/diagnóstico por imagem , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/terapia , Feminino , Seguimentos , Camundongos , Camundongos Endogâmicos ICR , Gravidez
7.
Cell Insight ; 1(6): 100060, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37193353

RESUMO

Cholinergic neurons in the basal forebrain constitute a major source of cholinergic inputs to the forebrain, modulate diverse functions including sensory processing, memory and attention, and are vulnerable to Alzheimer's disease (AD). Recently, we classified cholinergic neurons into two distinct subpopulations; calbindin D28K-expressing (D28K+) versus D28K-lacking (D28K-) neurons. Yet, which of these two cholinergic subpopulations are selectively degenerated in AD and the molecular mechanisms underlying this selective degeneration remain unknown. Here, we reported a discovery that D28K+ neurons are selectively degenerated and this degeneration induces anxiety-like behaviors in the early stage of AD. Neuronal type specific deletion of NRADD effectively rescues D28K+ neuronal degeneration, whereas genetic introduction of exogenous NRADD causes D28K- neuronal loss. This gain- and loss-of-function study reveals a subtype specific degeneration of cholinergic neurons in the disease progression of AD and hence warrants a novel molecular target for AD therapy.

8.
Aging Dis ; 12(3): 786-800, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34094642

RESUMO

Stroke activates microglia pro-inflammatory response that not only induces the early neuronal injuries but also causes the secondary brain infarction. Yet, the underlying mechanisms for how microglia become activated in stroke are still unknown. Here, using the next-generation of RNA sequencing we find a total of 778 genes increasingly expressed in brain of stroke mice. Of these, we identified Hmgb2 as a microglia pro-inflammatory mediator by promoting the transcription of Ctss. Inhibition of either Hmgb2 or Ctss blocks microglia pro-inflammatory response and protects against brain damages and improves the neurological functions of stroke mice. This study uncovers Hmgb2 and Ctss as the major microglia inflammatory response mediators in stroke and hence warrants the promising targets for stroke therapies.

9.
Biomedicines ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919019

RESUMO

Sanguinarine, a benzophenanthridine alkaloid, has been described to have an antiplatelet activity. However, its antithrombotic effect and the mechanism of platelet inhibition have not thoroughly been explored. The current study found that sanguinarine had an inhibitory effect on thrombus formation. This inhibitory effect was quite evident both in the flow-chamber assays as well as in a murine model of FeCl3-induced carotid artery thrombosis. Further investigations also revealed that sanguinarine inhibited the collagen-induced human platelet aggregation and granule release. At the same time, it also prevented platelet spreading and adhesion to immobilized fibrinogen. The molecular mechanisms of its antiplatelet activity were found to be as follows: 1. Reduced phosphorylation of the downstream signaling pathways in collagen specific receptor GPVI (Syk-PLCγ2 and PI3K-Akt-GSK3ß); 2. Inhibition of collagen-induced increase in the intracellular Ca2+ concentration ([Ca2+]i); 3. Inhibition of integrin αIIbß3 outside-in signaling via reducing ß3 and Src (Tyr-416) phosphorylation. It can be concluded that sanguinarine inhibits collagen-induced platelet activation and reduces thrombus formation. This effect is mediated via inhibiting the phosphorylation of multiple components in the GPVI signaling pathway. Current data also indicate that sanguinarine can be of some clinical value to treat cardiovascular diseases involving an excess of platelet activation.

10.
Cell Rep ; 34(7): 108741, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596426

RESUMO

Mossy cells (MCs) are a unique group of excitatory neurons in the hippocampus, a brain region important for emotion, learning, and memory. Due to the lack of a reliable method to isolate MCs from other cell types, how MCs integrate neural information and convey it to their synaptic targets for engaging a specific function are still unknown. Here, we report that MCs control the efficacy of spatial memory retrieval by synapsing directly onto local somatostatin-expressing (SST) cells. MC-SST synaptic transmission undergoes long-term potentiation (LTP), requiring Gria2-lacking Ca2+-permeable anti-α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor (Ca2+AR). A long noncoding RNA (Gria2I) is associated with Gria2 transcriptional repressors in SST cells. Silencing Gria2I induces Gria2 transcription, blocks LTP of MCs-SST synaptic transmission, and reduces the efficacy of memory retrieval. Thus, MCs directly and functionally innervate local SST neurons, and this innervation controls the efficacy of spatial memory retrieval by Gria2I inhibition of Gria2 transcription.


Assuntos
Memória/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Receptores de AMPA/antagonistas & inibidores , Animais , Masculino , Camundongos , Receptores de AMPA/fisiologia
11.
Aging Cell ; 19(5): e13144, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32222058

RESUMO

Recently, we have reported that dentate mossy cells (MCs) control memory precision via directly and functionally innervating local somatostatin (SST) inhibitory interneurons. Here, we report a discovery that dysfunction of synaptic transmission between MCs and SST cells causes memory imprecision in a mouse model of early Alzheimer's disease (AD). Single-cell RNA sequencing reveals that miR-128 that binds to a 3'UTR of STIM2 and inhibits STIM2 translation is increasingly expressed in MCs from AD mice. Silencing miR-128 or disrupting miR-128 binding to STIM2 evokes STIM2 expression, restores synaptic function, and rescues memory imprecision in AD mice. Comparable findings are achieved by directly engineering MCs with the expression of STIM2. This study unveils a key synaptic and molecular mechanism that dictates how memory maintains or losses its details and warrants a promising target for therapeutic intervention of memory decays in the early stage of AD.


Assuntos
Doença de Alzheimer/metabolismo , Transtornos da Memória/metabolismo , MicroRNAs/metabolismo , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Molécula 2 de Interação Estromal/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Transmissão Sináptica
12.
Eur J Pharmacol ; 862: 172626, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31445013

RESUMO

Neferine has long been recognized as a medicinal herbal ingredient with various physiological and pharmacological activities. Although previous studies have reported its antithrombotic effect, the underlying mechanisms have not been thoroughly investigated. Since platelets play a key role in thrombosis, we investigated the effects of neferine on human platelet function and the potential mechanisms. Platelet aggregation, adhesion and spreading were performed to investigate the effect of neferine on inhibition of platelet function. Flow cytometry was used to determine platelet alpha granule secretion and integrin IIb/IIIa activation, as detected by CD62P (P-selectin) expression, PAC-1 and fibrinogen binding. Western blotting was utilized to investigate the effect of neferine on intracellular signaling of activated platelet. We found that neferine significantly suppressed platelet aggregation and remarkably promoted the dissociation of platelet aggregates induced by collagen, thrombin, U46619, ADP and adrenaline in a dose-dependent manner. Flow cytometry analysis showed that neferine inhibited thrombin-induced platelet P-selectin expression, PAC-1 and fibrinogen binding. In addition, neferine reduced the adhesion of human platelets on coated collagen under both static and shearing condition at an arterial shear rate of 40 dyne/cm2. Neferine also inhibited the spreading of human platelets on immobilized fibrinogen. Western blot analysis showed that neferine inhibited PI3K activation, and decreased the levels of phosphorylation of Akt, GSK3ß and p38 MAPK in platelets. In summary, neferine has the potential to be an antiplatelet and antithrombotic agent by inhibiting the PI3K-Akt-GSK3ß/p38 MAPK signaling pathway.


Assuntos
Benzilisoquinolinas/farmacologia , Plaquetas/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Adulto , Benzilisoquinolinas/uso terapêutico , Adesão Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Voluntários Saudáveis , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombose/tratamento farmacológico , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Cell Death Dis ; 10(2): 87, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692520

RESUMO

Tumor-associated thrombosis is the second leading risk factor for cancer patient death, and platelets activity is abnormal in cancer patients. Discovering the mechanism of platelet activation and providing effective targets for therapy are urgently needed. Cancer cell- derived IgG has been reported to regulate development of tumors. However, studies on the functions of cancer cell-derived IgG are quite limited. Here we investigated the potential role of cancer cell-derived IgG in platelet activation. We detected the expression of CD62P on platelets by flow cytometry and analyzed platelet function by platelets aggregation and ATP release. The content of IgG in cancer cell supernatants was detected by enzyme-linked immune sorbent assay. The distribution of cancer-derived IgG in cancer cells was analyzed by immunofluorescence assay. Western blot was performed to quantify the relative expression of FcγRIIa, syk, PLCγ2. The interaction between cancer cell-derived IgG and platelet FcγRIIa was analyzed by co-immunoprecipitation. The results showed that higher levels of CD62P were observed in cancer patients' platelets compared with that of healthy volunteers. Cancer cell culture supernatants increased platelet CD62P and PAC-1 expression, sensitive platelet aggregation and ATP release in response to agonists, while blocking FcγRIIa or knocking down IgG reduced the activation of platelets. Coimmunoprecipitation results showed that cancer cell-derived IgG interacted directly with platelet FcγRIIa. In addition, platelet FcγRIIa was highly expressed in liver cancer patients. In summary, cancer cell-derived IgG interacted directly with FcγRIIa and activated platelets; targeting this interaction may be an approach to prevent and treat tumor-associated thrombosis.


Assuntos
Plaquetas/metabolismo , Imunoglobulina G/sangue , Neoplasias/sangue , Receptores de IgG/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Humanos , Neoplasias/imunologia , Ativação Plaquetária , Transdução de Sinais
14.
Oncotarget ; 8(50): 87174-87181, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152072

RESUMO

Platelets in the primary tumor microenvironment play crucial roles in regulating tumor growth, metastasis, and angiogenesis, but the underlying mechanisms are unclear. Here, we show that platelet releasates exhibited a proliferative effect on HeLa cells, and this effect correlated with a reduction of KLF6 expression. After incubation with either washed human platelets or collagen-related peptide (CRP) activated platelet releasates, expression of KLF6 in the HeLa cervical tumor cell line was markedly reduced. However, no significant difference was observed between control HeLa cells and HeLa cells incubated with resuspended activated platelet pellet. Moreover, the platelets' promoting effect on HeLa cell growth was significantly abolished in KLF6 silenced HeLa cells. In addition, blocking TGF-ß signaling with SB431542, a TGF-ß receptor inhibitor, also counteracted the effect of platelets on proliferation and KLF6 expression in HeLa cells. From these findings, we conclude that platelet derived TGF-ß promotes proliferation of HeLa cells by decreasing the expression of KLF6. The discovery that KLF6 is a key target of platelet-derived TGF-ß signaling in HeLa cells identifies a potential new therapeutic target for the prevention and treatment of cervical carcinoma.

15.
Sci Rep ; 7(1): 3989, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638139

RESUMO

Platelets in the primary tumor microenvironment play crucial roles in the regulation of tumor progression, but the mechanisms underlying are poorly understood. Here, we report that platelet releasates exerted a proliferative effect on hepatocellular carcinoma (HCC) cells both in vitro and in vivo. This effect depended on a reduction of KLF6 expression in HCC cells. After incubation with either platelets or platelet granule contents, SMMC.7721 and HepG2 cells exhibited significant increases in proliferation and decreases in apoptosis. However, no effect was observed when incubating cancer cells with resuspended activated platelet pellet which exhausted of releasates. Platelet releasates also increased the population of HCC cells in the S and G2/M phases of the cell cycle and reduced the cell population in the G0/G1 phase. Moreover, knocking down KLF6 expression significantly diminished the platelet-mediated enhancement of HCC growth. In addition, blocking TGF-ß signaling with the TGF-ß receptor inhibitor SB431542 counteracted the effect of platelets on KLF6 expression and proliferation of HCC cells. Based on these findings, we conclude that platelet releasates, especially TGF-ß, promote the proliferation of SMMC.7721 and HepG2 cells by decreasing expression of KLF6. This discovery identifies a potential new therapeutic target for the prevention and treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Fator 6 Semelhante a Kruppel/genética , Neoplasias Hepáticas/tratamento farmacológico , Fator de Crescimento Transformador beta/genética , Animais , Apoptose/efeitos dos fármacos , Benzamidas/administração & dosagem , Plaquetas/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Dioxóis/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Huazhong Univ Sci Technolog Med Sci ; 37(2): 226-230, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28397043

RESUMO

Simvastatin is a hypolipidemic drug that inhibits hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase to control elevated cholesterol, or hypercholesterolemia. Previous studies have shown that simvastatin may attenuate inflammation in ischemia-reperfusion injury and sepsis. Herein, we hypothesized that simvastatin may prevent rats from lipopolysaccharide (LPS)-induced septic shock. In our study, rats were divided into a saline group, an LPS group and an LPS plus simvastatin group. Male Sprague-Dawley (SD) rats were pretreated with simvastatin (1 mg/kg) for 30 min before the addition of LPS (8 mg/kg), with variations in left ventricular pressure recorded throughout. Ninety min after LPS injection, whole blood was collected from the inferior vena cava, and neutrophils were separated from the whole blood using separating medium. The neutrophils were then lysed for Western blotting to detect the levels of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1). In addition, mesentery microcirculations of inlet diameter, outlet diameter and blood flow rate were measured in all three groups. The results indicated that simvastatin significantly promoted heart systolic function and increased the level of uPA while simultaneously inhibited the expression of PAI-1 as compared with LPS group. Moreover, simvastatin reversed the LPS-induced inhibition of mesentery microcirculation. Taken together, it was suggested that simvastatin can effectively protect the rats from LPS-induced septic shock.


Assuntos
Lipopolissacarídeos/efeitos adversos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Choque Séptico/prevenção & controle , Sinvastatina/administração & dosagem , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Masculino , Microcirculação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Sinvastatina/farmacologia
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-238379

RESUMO

Simvastatin is a hypolipidemic drug that inhibits hydroxymethylglutaryl coenzyme A (HMGCoA) reductase to control elevated cholesterol,or hypercholesterolemia.Previous studies have shown that simvastatin may attenuate inflammation in ischemia-reperfusion injury and sepsis.Herein,we hypothesized that simvastatin may prevent rats from lipopolysaccharide (LPS)-induced septic shock.In our study,rats were divided into a saline group,an LPS group and an LPS plus simvastatin group.Male Sprague-Dawley (SD) rats were pretreated with simvastatin (1 mg/kg) for 30 min before the addition of LPS (8 mg/kg),with variations in left ventricular pressure recorded throughout.Ninety min after LPS injection,whole blood was collected from the inferior vena cava,and neutrophils were separated from the whole blood using separating medium.The neutrophils were then lysed for Western blotting to detect the levels of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1).In addition,mesentery microcirculations of inlet diameter,outlet diameter and blood flow rate were measured in all three groups.The results indicated that simvastatin significantly promoted heart systolic function and increased the level ofuPA while simultaneously inhibited the expression of PAI-1 as compared with LPS group.Moreover,simvastatin reversed the LPS-induced inhibition of mesentery microcirculation.Taken together,it was suggested that simvastatin can effectively protect the rats from LPS-induced septic shock.

18.
Mol Nutr Food Res ; 60(9): 1984-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27006308

RESUMO

SCOPE: Propolis is thought to help prevent thrombotic and related cardiovascular diseases in humans. Chrysin, a bioflavonoids compound found in high levels in propolis and in honey, has been reported to possess antiplatelet activity. However, the mechanism by which it inhibits platelet function is unclear. METHODS AND RESULTS: The effects of chrysin on agonist-activated platelet-aggregation, granule-secretion, and integrin αIIbß3 activation were examined. Its effects on the phosphorylation of Akt, GSK3ß, MAPKs, and several proteins of the glycoprotein VI (GPVI) signaling pathway were also studied on collaged-activated platelets. In addition, human platelet spreading on immobilized fibrinogen was also tested. We found that chrysin dose dependently inhibited platelet aggregation and granule secretion induced by collagen, as well as platelet aggregation induced by ADP, thrombin, and U46619. Chrysin also markedly reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen. Biochemical analysis revealed that chrysin inhibited collagen-induced activation of Syk, PLCγ2, PKC, as well as the phosphorylation of Akt and ERK1/2. Additionally, chrysin attenuated phosphorylation of molecules such as FcγRIIa, FAK, Akt, and GSK3ß in platelet spreading on immobilized fibrinogen. CONCLUSIONS: Our findings indicate that chrysin suppresses not only integrin αIIbß3-mediated "inside-out" signaling, but also the "outside-in" signal transmission. This implies that chrysin may represent a potential candidate for an antiplatelet agent.


Assuntos
Flavonoides/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Adulto , Colágeno/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/metabolismo
19.
Sci Rep ; 5: 11142, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26059557

RESUMO

Flavonoids exert both anti-oxidant and anti-platelet activities in vitro and in vivo. Pentamethylquercetin (PMQ), a polymethoxylated flavone derivative, has been screened for anti-carcinogenic and cardioprotective effects. However, it is unclear whether PMQ has anti-thrombotic effects. In the present study, PMQ (20 mg/kg) significantly inhibited thrombus formation in the collagen- epinephrine- induced acute pulmonary thrombosis mouse model and the ferric chloride-induced carotid injury model. To explore the mechanism, we evaluated the effects of PMQ on platelet function. We found that PMQ inhibited platelet aggregation and granule secretion induced by low dose agonists, including ADP, collagen, thrombin and U46619. Biochemical analysis revealed that PMQ inhibited collagen-, thrombin- and U46619-induced activation of Syk, PLCγ2, Akt, GSK3ß and Erk1/2. Therefore, we provide the first report to show that PMQ possesses anti-thrombotic activity in vivo and inhibited platelet function in vitro, suggesting that PMQ may represent a potential therapeutic candidate for the prevention or treatment of thrombotic disorders.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Quercetina/análogos & derivados , Trombose/prevenção & controle , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Plaquetas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Quercetina/farmacologia , Trombina/farmacologia
20.
Eur J Pharmacol ; 746: 63-9, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25445049

RESUMO

Loureirin A is a flavonoid extracted from Dragon׳s Blood that has been used to promote blood circulation and remove stasis in Chinese traditional medicine. However, the mechanisms of these effects are not fully understood. We explored the anti-platelet activity and underlying mechanism of loureirin A in vitro. Our results indicated that loureirin A negatively affected agonist-induced platelet aggregation such as collagen, collagen-related peptide (CRP), ADP and thrombin. Loureirin A inhibited collagen-induced platelet ATP secretion and thrombin-stimulated P-selectin expression in a dose-dependent manner. Platelet spreading on immobilized fibrinogen was significantly impaired in the presence of loureirin A. Immunoblotting analysis indicated that 100µM of loureirin A almost completely eliminated collagen-induced Akt phosphorylation at Ser473. Interestingly, a submaximal dose (50µM) of loureirin A had an additive inhibitory effect with the phosphoinositide 3-kinase (PI3K) inhibitor Ly294002 on collage-induced Akt phosphorylation in platelets. Taken together, loureirin A had an inhibitory effect on platelet activation, perhaps through an impairment of PI3K/Akt signaling.


Assuntos
Chalconas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Fibrinogênio/química , Fibrinogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Masculino , Camundongos , Selectina-P/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Agregação Plaquetária/efeitos dos fármacos , Trombina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...