Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36294279

RESUMO

Pseudomonas aeruginosa (Pa) is the predominant bacterial pathogen in people with cystic fibrosis (CF) and can be transmitted by airborne droplet nuclei. Little is known about the ability of ultraviolet band C (UV-C) irradiation to inactivate Pa at doses and conditions relevant to implementation in indoor clinical settings. We assessed the effectiveness of UV-C (265 nm) at up to seven doses on the decay of nebulized Pa aerosols (clonal Pa strain) under a range of experimental conditions. Experiments were done in a 400 L rotating sampling drum. A six-stage Andersen cascade impactor was used to collect aerosols inside the drum and the particle size distribution was characterized by an optical particle counter. UV-C effectiveness was characterized relative to control tests (no UV-C) of the natural decay of Pa. We performed 112 tests in total across all experimental conditions. The addition of UV-C significantly increased the inactivation of Pa compared with natural decay alone at all but one of the UV-C doses assessed. UV-C doses from 246-1968 µW s/cm2 had an estimated effectiveness of approximately 50-90% for airborne Pa. The effectiveness of doses ≥984 µW s/cm2 were not significantly different from each other (p-values: 0.365 to ~1), consistent with a flattening of effectiveness at higher doses. Modelling showed that delivering the highest dose associated with significant improvement in effectiveness (984 µW s/cm2) to the upper air of three clinical rooms would lead to lower room doses from 37-49% of the 8 h occupational limit. Our results suggest that UV-C can expedite the inactivation of nebulized airborne Pa under controlled conditions, at levels that can be delivered safely in occupied settings. These findings need corroboration, but UV-C may have potential applications in locations where people with CF congregate, coupled with other indoor and administrative infection control measures.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Humanos , Desinfecção/métodos , Aerossóis e Gotículas Respiratórios , Raios Ultravioleta , Fibrose Cística/microbiologia
2.
ACS Appl Mater Interfaces ; 14(9): 11610-11618, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212228

RESUMO

In recent years, two-dimensional (2D) semiconductors have attracted considerable attention from both academic and industrial communities. Recent research has begun transforming from constructing basic field-effect transistors (FETs) into designing functional circuits. However, device processing remains a bottleneck in circuit-level integration. In this work, a non-destructive doping strategy is proposed to modulate precisely the threshold voltage (VTH) of MoS2-FETs in a wafer scale. By inserting an Al interlayer with a varied thickness between the high-k dielectric and the Au top gate (TG), the doping could be controlled. The full oxidation of the Al interlayer generates a surplus of oxygen vacancy (Vo) in the high-k dielectric layer, which further leads to stable electron doping. The proposed strategy is then used to optimize an inverter circuit by matching the electrical properties of the load and driver transistors. Furthermore, the doping strategy is used to fabricate digital logic blocks with desired logic functions, which indicates its potential to fabricate fully integrated multistage logic circuits based on wafer-scale 2D semiconductors.

3.
Environ Sci Technol ; 55(1): 499-508, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33332096

RESUMO

The viability of airborne respiratory viruses varies with ambient relative humidity (RH). Numerous contrasting reports spanning several viruses have failed to identify the mechanism underlying this dependence. We hypothesized that an "efflorescence/deliquescence divergent infectivity" (EDDI) model accurately predicts the RH-dependent survival of airborne human rhinovirus-16 (HRV-16). We measured the efflorescence and deliquescence RH (RHE and RHD, respectively) of aerosols nebulized from a protein-enriched saline carrier fluid simulating the human respiratory fluid and found the RH range of the aerosols' hygroscopic hysteresis zone (RHE-D) to be 38-68%, which encompasses the preferred RH for indoor air (40-60%). The carrier fluid containing HRV-16 was nebulized into the sub-hysteresis zone (RHD) air, to set the aerosols to the effloresced/solid or deliquesced/liquid state before transitioning the RH into the intermediate hysteresis zone. The surviving fractions (SFs) of the virus were then measured 15 min post nebulization. SFs were also measured for aerosols introduced directly into the RHD zones without transition. SFs for transitioned aerosols in the hysteresis zone were higher for effloresced (0.17 ± 0.02) than for deliquesced (0.005 ± 0.005) aerosols. SFs for nontransitioned aerosols in the RHD zones were 0.18 ± 0.06, 0.05 ± 0.02, and 0.20 ± 0.05, respectively, revealing a V-shaped SF/RH dependence. The EDDI model's prediction of enhanced survival in the hysteresis zone for effloresced carrier aerosols was confirmed.


Assuntos
Rhinovirus , Aerossóis , Humanos , Umidade , Molhabilidade
5.
Environ Int ; 107: 89-99, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28692913

RESUMO

The paediatric intensive care unit (PICU) provides care to critically ill neonates, infants and children. These patients are vulnerable and susceptible to the environment surrounding them, yet there is little information available on indoor air quality and factors affecting it within a PICU. To address this gap in knowledge we conducted continuous indoor and outdoor airborne particle concentration measurements over a two-week period at the Royal Children's Hospital PICU in Brisbane, Australia, and we also collected 82 bioaerosol samples to test for the presence of bacterial and viral pathogens. Our results showed that both 24-hour average indoor particle mass (PM10) (0.6-2.2µgm-3, median: 0.9µgm-3) and submicrometer particle number (PN) (0.1-2.8×103pcm-3, median: 0.67×103pcm-3) concentrations were significantly lower (p<0.01) than the outdoor concentrations (6.7-10.2µgm-3, median: 8.0µgm-3 for PM10 and 12.1-22.2×103pcm-3, median: 16.4×103pcm-3 for PN). In general, we found that indoor particle concentrations in the PICU were mainly affected by indoor particle sources, with outdoor particles providing a negligible background. We identified strong indoor particle sources in the PICU, which occasionally increased indoor PN and PM10 concentrations from 0.1×103 to 100×103pcm-3, and from 2µgm-3 to 70µgm-3, respectively. The most substantial indoor particle sources were nebulization therapy, tracheal suction and cleaning activities. The average PM10 and PN emission rates of nebulization therapy ranged from 1.29 to 7.41mgmin-1 and from 1.20 to 3.96pmin-1×1011, respectively. Based on multipoint measurement data, it was found that particles generated at each location could be quickly transported to other locations, even when originating from isolated single-bed rooms. The most commonly isolated bacterial genera from both primary and broth cultures were skin commensals while viruses were rarely identified. Based on the findings from the study, we developed a set of practical recommendations for PICU design, as well as for medical and cleaning staff to mitigate aerosol generation and transmission to minimize infection risk to PICU patients.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Unidades de Terapia Intensiva Pediátrica , Austrália , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Tamanho da Partícula , Vírus/isolamento & purificação
6.
Sci Total Environ ; 584-585: 849-855, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28148457

RESUMO

The TSI DustTrak Aerosol Monitor is a portable real-time instrument widely used for particulate matter (PM) mass concentrations monitoring. The aim of this work is to report on issues that have arisen from the use of the latest generation models DustTrak DRX (8533 and 8534) in the BREATHE, UPTECH and IMPROVE projects that can compromise data quality. The main issue we encountered was the occurrence of sudden artefact jumps in PM concentration, which can involve an increase from a few to some hundreds of µg·m-3. These artefact jumps can sometimes be easily recognised ("obvious jump"), while others can be difficult to identify because the difference in the concentrations before and after the jump might be just few µg·m-3 ("possible jump") or because the jump is sustained over the whole monitoring period and only detectable if PM concentrations are simultaneously measured by other instruments ("hidden jump"). Moreover, in areas of relatively low PM levels, the unit reported concentration of 0µg·m-3 for ambient PM concentration or even negative concentration values which may seriously compromise the dataset. These data suggest issues with the detection of low PM concentrations, which could be due to an incorrect instrument offset or the factory calibration setting being inadequate for these PM concentrations. The upward and downward artefact jumps were not related to especially dusty or clean conditions, since they have been observed in many kinds of environments: indoor and outdoor school environments, subway stations and in ambient urban background air. Therefore, PM concentration data obtained with the TSI DustTrak DRX models should be handled with care and meticulously revised before being considered valid. To prevent these issues the use of auto zero module is recommended, so the DustTrak monitor is automatic re-zeroed without requiring the presence of any user.

7.
Sci Total Environ ; 579: 1000-1034, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908624

RESUMO

Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging. Therefore the aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China. In addition, this review provides insights into the role of wildfire and anthropogenic BB on air quality and health globally. Further, we attempted to provide a basis for formulation of policies and regulations by policy makers in China.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/análise , Incêndios , Biomassa , China , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise
9.
Environ Int ; 94: 196-210, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27258661

RESUMO

Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes the problems are simply ignored. This review summarizes the current results and knowledge gained from the scientific literature on air quality in classrooms. Possible scenarios for the future are discussed and guideline values proposed which can serve to help authorities, government organizations and commissions improve the situation on a global level.


Assuntos
Poluição do Ar/análise , Proteção da Criança , Instituições Acadêmicas , Poluentes Atmosféricos/análise , Criança , Mudança Climática , Ambiente Controlado , Monitoramento Ambiental/métodos , Zeladoria , Humanos , Material Particulado/análise
10.
Environ Int ; 91: 230-42, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26989811

RESUMO

Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future.


Assuntos
Poluentes Atmosféricos/análise , Biomassa , Cidades , Incêndios , Aerossóis/análise , Monitoramento Ambiental/métodos , Humanos , Espectrometria de Massas , Compostos Orgânicos/análise , Material Particulado/análise , Queensland
11.
Environ Res ; 140: 691-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26087435

RESUMO

Exposure assessment studies conducted in developing countries have been based on fixed-site monitoring to date. This is a major deficiency, leading to errors in estimating the actual exposures, which are a function of time spent and pollutant concentrations in different microenvironments. This study quantified school children's daily personal exposure to ultrafine particles (UFP) using real-time monitoring, as well as volatile organic compounds (VOCs) and NO2 using passive sampling in rural Bhutan in order to determine the factors driving the exposures. An activity diary was used to track children's time activity patterns, and difference in mean exposure levels across sex and indoor/outdoor were investigated with ANOVA. 82 children, attending three primary schools participated in this study; S1 and S2 during the wet season and S3 during the dry season. Mean daily UFP exposure (cm(-3)) was 1.08×10(4) for children attending S1, 9.81×10(3) for S2, and 4.19×10(4) for S3. The mean daily NO2 exposure (µg m(-3)) was 4.27 for S1, 3.33 for S2 and 5.38 for S3 children. Likewise, children attending S3 also experienced higher daily exposure to a majority of the VOCs than those attending S1 and S2. Time-series of UFP personal exposures provided detailed information on identifying sources of these particles and quantifying their contributions to the total daily exposures for each microenvironment. The highest UFP exposure resulted from cooking/eating, contributing to 64% of the daily exposure, due to firewood combustion in houses using traditional mud cookstoves. The lowest UFP exposures were during the hours that children spent outdoors at school. The outcomes of this study highlight the significant contributions of lifestyle and socio-economic factors in personal exposures and have applications in environmental risk assessment and household air pollution mitigation in Bhutan.


Assuntos
Poluição do Ar , Exposição Ambiental , População Rural , Butão , Criança , Feminino , Humanos , Masculino
12.
Int J Environ Res Public Health ; 12(2): 1687-702, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25648226

RESUMO

Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children's health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Material Particulado/toxicidade , Doenças Respiratórias/etiologia , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Austrália , Criança , Saúde da Criança , Estudos Transversais , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Feminino , Humanos , Inflamação/diagnóstico , Inflamação/etiologia , Masculino , Tamanho da Partícula , Material Particulado/análise , Projetos Piloto , Queensland , Projetos de Pesquisa , Doenças Respiratórias/diagnóstico , Emissões de Veículos/análise
13.
Environ Int ; 69: 9-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24785990

RESUMO

In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm(-3), 15 µg m(-3), 804 cf um(-3) and 177 cf um(-3) for flood-affected houses (AFH), and 2.74 p cm(-3), 15 µg m(-3), 547 cf um(-3) and 167 cf um(-3) for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 µg m(-2) for AFH and 1454 ± 678 µg m(-2) for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants.


Assuntos
Aerossóis/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Recuperação e Remediação Ambiental/estatística & dados numéricos , Inundações , Habitação , Bactérias/citologia , Poeira/prevenção & controle , Recuperação e Remediação Ambiental/métodos , Fungos/citologia , Humanos , Tamanho da Partícula , Queensland , Inquéritos e Questionários , Fatores de Tempo
14.
Appl Environ Microbiol ; 79(20): 6331-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934489

RESUMO

Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.


Assuntos
Aerossóis , Microbiologia do Ar , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Poeira , Fungos/isolamento & purificação , Archaea/classificação , Bactérias/classificação , Carga Bacteriana , Biodiversidade , Contagem de Células , Contagem de Colônia Microbiana , Eletroforese em Gel de Gradiente Desnaturante , Fungos/classificação , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
15.
Environ Sci Technol ; 46(1): 534-42, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22084932

RESUMO

Vacuuming can be a source of indoor exposure to biological and nonbiological aerosols, although there are few data that describe the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price, and age. Emissions of particles between 0.009 and 20 µm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10(6) to 1.1 × 10(11) particles min(-1). Emission of 0.54-20 µm particles ranged from 4.0 × 10(4) to 1.2 × 10(9) particles min(-1). PM(2.5) emissions were between 2.4 × 10(-1) and 5.4 × 10(3) µg min(-1). Bacteria emissions ranged from 0 to 7.4 × 10(5) bacteria min(-1) and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to nonbiological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.


Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Bactérias/citologia , Produtos Domésticos , Material Particulado/análise , Poluentes Atmosféricos/economia , Poluição do Ar em Ambientes Fechados/economia , Poeira/análise , Produtos Domésticos/economia , Tamanho da Partícula , Estatísticas não Paramétricas , Temperatura , Fatores de Tempo
16.
Environ Sci Technol ; 46(2): 704-12, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22191732

RESUMO

An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment.


Assuntos
Lasers , Ozônio/química , Material Particulado/química , Impressão/instrumentação , Poluição do Ar em Ambientes Fechados , Estrutura Molecular , Papel
17.
Environ Sci Technol ; 45(15): 6444-52, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21662984

RESUMO

While recent research has provided valuable information as to the composition of laser printer particles, their formation mechanisms, and explained why some printers are emitters while others are low emitters, questions relating to the potential exposure of office workers remained unanswered. In particular, (i) what impact does the operation of laser printers have on the background particle number concentration (PNC) of an office environment over the duration of a typical working day? (ii) What is the airborne particle exposure to office workers in the vicinity of laser printers? (iii) What influence does the office ventilation have upon the transport and concentration of particles? (iv) Is there a need to control the generation of, and/or transport of particles arising from the operation of laser printers within an office environment? (v) What instrumentation and methodology is relevant for characterizing such particles within an office location? We present experimental evidence on printer temporal and spatial PNC during the operation of 107 laser printers within open plan offices of five buildings. The 8 h time-weighted average printer particle exposure is significantly less than the 8 h time-weighted local background particle exposure, but that peak printer particle exposure can be greater than 2 orders of magnitude higher than local background particle exposure. The particle size range is predominantly ultrafine (<100 nm diameter). In addition we have established that office workers are constantly exposed to nonprinter derived particle concentrations, with up to an order of magnitude difference in such exposure among offices, and propose that such exposure be controlled along with exposure to printer derived particles. We also propose, for the first time, that peak particle reference values be calculated for each office area analogous to the criteria used in Australia and elsewhere for evaluating exposure excursion above occupational hazardous chemical exposure standards. A universal peak particle reference value of 2.0 × 10(4) particles cm(-3) has been proposed.


Assuntos
Eletrônica , Monitoramento Ambiental , Lasers , Exposição Ocupacional/análise , Material Particulado/análise , Local de Trabalho , Tamanho da Partícula , Fatores de Tempo
18.
Environ Sci Pollut Res Int ; 17(6): 1268-78, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20195908

RESUMO

BACKGROUND, AIM AND SCOPE: The impact of air pollution on school children's health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. MATERIALS AND METHODS: In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM(2.5)), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. RESULTS: For outdoor PN and PM(2.5), early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM(2.5) and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM(2.5) level was mainly affected by the outdoor PM(2.5) (r = 0.68, p < 0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p < 0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM(2.5) was inversely correlated with the indoor to outdoor PM(2.5) ratio (I/O ratio; r = -0.49, p < 0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p < 0.01). DISCUSSION AND CONCLUSIONS: The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100-400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM(2.5) was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. RECOMMENDATIONS AND PERSPECTIVES: The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimising the adverse health effects on school children.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Instituições Acadêmicas , Movimentos do Ar , Monitoramento Ambiental , Cinética , Tamanho da Partícula , Tempo
19.
Environ Sci Technol ; 43(24): 9103-9, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20000499

RESUMO

The aim of this work was to investigate ultrafine particles (<0.1 microm) in primary school classrooms, in relation to the classroom activities. The investigations were conducted in three classrooms during two measuring campaigns, which together encompassed a period of 60 days. Initial investigations showed that under the normal operating conditions of the school there were many occasions in all three classrooms where indoor particle concentrations increased significantly compared to outdoor levels. By far the highest increases in the classroom resulted from art activities (painting, gluing, and drawing), at times reaching over 1.4 x 10(5) particle cm(-3). The indoor particle concentrations exceeded outdoor concentrations by approximately 1 order of magnitude, with a count median diameter ranging from 20 to 50 nm. Significant increases also occurred during cleaning activities, when detergents were used. GC-MS analysis conducted on 4 samples randomly selected from about 30 different paints and glues, as well as the detergent used in the school, showed that d-limonene was one of the main organic compounds of the detergent, however, it was not detected in the samples of the paints and the glue. Controlled experiments showed that this monoterpene, emitted from the detergent, reacted with O(3) (at outdoor ambient concentrations ranging from 0.06 to 0.08 ppm) and formed secondary organic aerosols. Further investigations to identify other liquids that may be potential sources of the precursors of secondary organic aerosols were outside the scope of this project, however, it is expected that the problem identified by this study could be more widely spread, since most primary schools use liquid materials for art classes, and all schools use detergents for cleaning. Further studies are therefore recommended to better understand this phenomenon and also to minimize exposure of school children to ultrafine particles from these indoor sources.


Assuntos
Aerossóis/química , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Instituições Acadêmicas , Criança , Humanos , Oxidantes Fotoquímicos/análise , Ozônio/análise , Tamanho da Partícula , Compostos Orgânicos Voláteis/análise
20.
Environ Sci Technol ; 43(4): 1015-22, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19320151

RESUMO

While current research has demonstrated that the operation of some laser printers results in emission of high concentrations of ultrafine particles, fundamental gaps in knowledge in relation to the emissions still remain. In particular, there have been no answers provided to questions such as the following: (1) What is the composition of the particles? (2) What are their formation mechanisms? (3) Why are some printers high emitters, while others are low? Considering the widespread use of printers and human exposure to these particles, understanding the process of particle formation is of critical importance. This study, using state-of-the-art instrumental methods, has addressed these three points. We present experimental evidence that indicates that intense bursts of particles are associated with temperature fluctuations and suggest that the difference between high and low emitters lies in the speed and sophistication of the temperature control. We have also shown, for the first time, that the particles are volatile and are of secondary nature, being formed in the air from VOC originating from both the paper and hot toner. Some of the toner is initially deposited on the fuser roller, after which the organic compounds evaporate and then form particles, through one of two main reaction pathways: homogeneous nucleation or secondary particle formation involving ozone.


Assuntos
Processos de Cópia , Lasers , Material Particulado/química , Compostos Orgânicos/análise , Tamanho da Partícula , Temperatura , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...