Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(6): 1592-1603, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265091

RESUMO

Osteoporosis is a disease that manifests itself as an abnormality of bone metabolism and is characterized by low bone mass and destruction of the bone microstructure. Since bone resorption occurs more rapidly than new bone formation, osteoporosis leads to reduced orthopedic implant stability. From a microenvironmental point of view, the rationale for this outcome is that osteoclasts are overactive in the bone tissue of patients with osteoporosis, and the large amount of H+ they produce leads to local chronic acidosis, which promotes bone mineral loss. Therefore, we designed a weakly alkaline layered double hydroxide (LDH) coating to modulate the pathologically acidic microenvironment and the osteogenic-osteoclastic coupling by releasing Sr2+. We prepared Sr-Fe LDH coatings on pure titanium implants using a hydrothermal method in this study and characterized the material using SEM, AFM, XRD, XPS, EDS, ICP, pH acidimeter, etc. We found that the coatings had good nanomorphology and were able to efficiently neutralize H+ as well as steadily release Sr2+ for up to 21 days. In vitro, the coating not only significantly promoted the adhesion, proliferation, and differentiation of osteoblasts, but also inhibited the differentiation of osteoclasts at the same time. In addition, in animal experiments, the coating significantly improved the mechanical stability of the implant in osteoporotic rats, increasing Sr-Fe LDH@Ti maximal push-out force by 72.2% compared to Ti. At the same time, the coating was effective in reversing the osteoporotic state, resulting in a 58.5% increase in BV/TV (%), and a 12.4% increase in Tb. N (1 mm-1), a 31.6% increase in Tb. Th (µm), and a 30.9% increase in BA (%). Our results suggest that this Sr-Fe LDH nanocoating material with acid-neutralizing, as well as long-term Sr2+-releasing capabilities, is a novel and effective orthopedic implant coating material under osteoporotic conditions.


Assuntos
Osseointegração , Osteoporose , Ratos , Humanos , Animais , Próteses e Implantes , Osso e Ossos , Osteoclastos
2.
ACS Appl Mater Interfaces ; 15(12): 15140-15151, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36929922

RESUMO

Multidrug-resistant bacteria caused by the unlimited overuse of antibiotics pose a great challenge to global health. An antibacterial method based on reactive oxygen species (ROS) is one of the effective strategies without inducing bacterial resistance. Owing to the ability of generating ROS, piezocatalytic material-mediated sonodynamic therapy (SDT) has drawn much attention. However, its major challenge is the low ROS generation efficiency in the piezocatalytic process due to the poor charge carrier concentration of piezoelectric materials. Vacancy engineering can regulate the charge density and largely promote ROS generation under ultrasound (US) irradiation. Herein, a US-responsive self-doped barium titanate with controlled oxygen vacancy (Vo) concentrations was successfully synthesized through a facile thermal reduction treatment at different temperatures (i.e., 350, 400, and 450 °C), and the corresponding samples were named as BTO-350, BTO-400, and BTO-450, respectively. Then, the effect of Vo concentrations on ROS generation efficiency during the piezocatalytic process was systematically studied. And BTO-400 was found to possess the highest piezocatalytic activity and excellent sonodynamic antibacterial performance against Escherichia coli and Staphylococcus aureus. Furthermore, its antibacterial mechanism was confirmed that the ROS generated under US could damage bacterial cell membrane and cause considerable leakage of cytoplasmic components and irreversible death of bacteria. Notably, the in vivo results illustrated that the BTO-400 could serve as an effective antibacterial agent and accelerate skin healing via SDT therapy. In all, the Vo defect-modified nano-BaTiO3 has a noticeable potential to induce a rapid and efficient sterilization as well as skin tissue repair by SDT.


Assuntos
Infecções Estafilocócicas , Terapia por Ultrassom , Humanos , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom/métodos , Esterilização , Antibacterianos/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...