Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 2): 128708, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096930

RESUMO

Uranium and thorium of symbiotic relationship commonly appear in one kind of raw or spent ore. The simultaneous enrichment toward both metals in the first step is essential during many hydrometallurgy processing. Therefore bifunctional solid-state ionic liquid supported amidoxime chitosan (ACS) adsorbents were developed to simultaneously adsorb the two metal from the aqueous solution. The adsorption capacity of the bifunctional adsorbents toward uranium and thorium were significantly superior to the ionic liquid-free amidoxime chitosan, obviously proving the synergistic effect. For both uranium and thorium, the adsorption capacity in the consequence of ACS-[N4444][DEHP], ACS-[N4444][EHEHP], ACS-[N1888][DEHP] and ACS-[N1888][EHEHP] prove the steric effect and PO bonding played important roles in the adsorption. Study on isotherms and kinetics demonstrated the adsorption of ionic liquid-ACS adopted monolayer and chemical way. The ΔGo of very small negative values highlighted ionic liquid-ACS were prone to adsorb uranium and thorium. The study showed feasibility of bifunctional solid-state ionic liquid supported amidoxime chitosan adsorbents for Th(IV) and U(VI).


Assuntos
Quitosana , Dietilexilftalato , Líquidos Iônicos , Oximas , Urânio , Tório , Adsorção , Urânio/análise , Concentração de Íons de Hidrogênio , Cinética
2.
ACS Omega ; 5(43): 27789-27799, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163762

RESUMO

In the present study, SWCNH-COOH and SWCNH-TETA were fabricated using single-walled carbon nanohorns (SWCNHs) via carboxylation and grafting with triethylenetetramine (TETA) for uranium (VI) ion [U(VI)] removal. The morpho-structural characterization of as-prepared adsorbing materials was performed by transmission electron microscopy, X-ray diffractometry, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Several parameters including the pH value of the aqueous solutions, contact time, temperature, and U(VI) concentration were used to evaluate the sorption efficiency of SWCNH-COOH and SWCNH-TETA. The Langmuir isotherm model could well represent the as-obtained adsorption isotherms, and the kinetics was successfully modeled by pseudo-second-order kinetics in the adsorption process. The maximum adsorption capacity of SWCNH-TETA was calculated as 333.13 mg/g considering the Langmuir isotherm model. Thermodynamic studies showed that adsorption proved to be a spontaneous endothermic process. Moreover, SWCNH-TETA exhibited excellent recycling performance and selective adsorption of uranium. Furthermore, the possible mechanism was investigated by XPS and density functional theory calculations, indicating that the excellent adsorption was attributed to the cooperation capability between uranium ions and nitrogen atoms in SWCNH-TETA. This efficient approach can provide a strategy for developing high-performance adsorbents for U(VI) removal from wastewater.

3.
RSC Adv ; 9(42): 24386-24393, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35527871

RESUMO

The reduction of Fe(iii)EDTA to Fe(ii)EDTA is the core process in a wet flue gas system with simultaneous desulfurization and denitrification. Herein, at first, the reductant ascorbic acid (VC) was used for reducing Fe(iii)EDTA. The feasibility of Fe(iii)EDTA reduction with ascorbic acid was investigated at different Fe(iii)EDTA concentrations, various pH values, diverse temperatures, and different molar ratios of VC to Fe(iii)EDTA. The results showed that the Fe(ii)EDTA concentration increased with an increase in the initial Fe(iii)EDTA concentration. Furthermore, the reduction efficiency increased as the mole ratio of VC to Fe(iii)EDTA was increased, and all the Fe(iii)EDTA reduction efficiencies were close to 100% when the mole ratio was more than 0.5. On the other hand, an alkaline environment did not favor the conversion of Fe(iii)EDTA by VC. The Fe(iii)EDTA conversion slightly increased as the temperature was increased. Moreover, compared with other reduction systems, ascorbic acid (VC) was found to be more powerful in reducing Fe(iii)EDTA, especially in air. In addition, VC only exhibited powerful ability in the conversion of Fe(iii)EDTA to Fe(ii)EDTA and hardly reduced Fe(ii)EDTA-NO. Finally, the stoichiometry of Fe(iii)EDTA reduction by ascorbic acid was derived. Thus, our study would offer a bridge between foundational research and industrial denitration using the combination of Fe(ii)EDTA and VC.

4.
RSC Adv ; 8(10): 5550-5558, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35542442

RESUMO

To find the optimal structure of the converging-diverging tube and develop a high-efficiency falling-film evaporator, the heat and mass transfer performances of falling-film evaporation with converging-diverging tubes of different dimensions were studied. The optimal converging-diverging tube was used in falling-film evaporation desorption of the basic aluminum sulfate desulphurization-regeneration solution, and different influential factors on the desorption effect were analyzed. It was found that converging-diverging tubes with large falling-film flow rate performed well in the heat and mass transfer of falling-film evaporation, and their rib height largely affected the heat and mass transfer performances. At the same rib height and rib pitch, the longer the converging segment of the converging-diverging tube was, the better the heat transfer performance was. The evaporation heat transfer coefficient and evaporation mass transfer rate in the optimal converging-diverging tube were 1.6 and 1.38 times larger than the smooth tube, respectively. The optimal converging-diverging tube was used in falling-film evaporation desorption of basic aluminum sulfate desulphurization-regeneration solution, at a perimeter flow rate of 0.114-0.222 kg m-1 s-1, the desorption efficiency inside the tube was up to 94.2%, which was 10.3-10.5% higher than that of the smooth tube. At the inlet sulfur concentration of 0.02-0.1 kmol m-3, the desorption efficiency was up to 94.1%, which was 12.0-16.3% larger than that of the smooth tube. At the heating temperature of 371.15-386.15 K, the desorption efficiency was up to 93.4%, which was 6.7-11.5% larger than that of the smooth tube. Smaller falling-film flow rate, higher sulfur concentration, or higher heating temperature was more constructive to SO2 desorption. Correlations were obtained to predict the mass transfer coefficient and SO2 desorption efficiency. This study develops a new type of falling-film evaporator for SO2 desorption from basic aluminum sulfate desulphurization-regeneration solution and provides a basis for process design and industrial application.

5.
RSC Adv ; 8(56): 32138-32145, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35547493

RESUMO

SO2 and NO emitted from coal-fired power plants have caused serious air pollution in China. In this work, a novel mixed absorbent, FeIIEDTA/urea, was employed for simultaneous removal of SO2 and NO in a packed tower, with a corresponding optimal ratio of 0.014 mol L-1 : 5%. The effects of various factors, such as mixed absorbent constitutions, reaction temperature, pH, O2 concentration, as well as concentrations of SO2 and NO, on simultaneous removal were investigated. The desulfurization efficiency was 95-99% in all tests, whereas denitrification was affected significantly by various conditions. NO removal efficiency decreased increasing oxygen concentration as well as increasing NO concentration. With an increase in temperature, pH, or SO2 concentration, NO removal efficiency increased first and then decreased. Under optimal conditions, SO2 removal efficiency was 100% and NO removal efficiency could exceed 91% within 80 min. The reaction mechanism was speculated according to relevant literature.

6.
Chemosphere ; 168: 623-629, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836274

RESUMO

(NH2)2CO as well as FeIIEDTA is an absorbent for simultaneous desulfurization and denitrification. However, they have their own drawbacks, like the oxidation of FeIIEDTA and the low solubility of NO in urea solution. To overcome these defects, A mixed absorbent containing both (NH2)2CO and FeIIEDTA was employed. The effects of various operating parameters (urea and FeIIEDTA concentration, temperature, inlet oxygen concentration, pH value) on NO removal were examined in the packed tower. The results indicated that the NO removal efficiency increased with the decrease of oxygen concentration as well as the increase of FeIIEDTA concentration. The NO removal efficiency had little change with a range of 25-45 °C, and sharply decreased at the temperature of above 55 °C. The NO removal efficiency initially increases up to the maximum value and then decreases with the increase of pH value as well as the raise of urea concentration. In addition, the synergistic mechanism of (NH2)2CO and FeIIEDTA on NO removal was investigated. Results showed that urea could react with FeIIEDTA-NO to produce FeIIEDTA, N2, and CO2, and hinder oxidation of FeIIEDTA. Finally, to evaluate the effect of SO32- on NO removal, a mixed absorbent containing FeIIEDTA, urea, and Na2SO3 was employed to absorb NO. The mixed absorbent could maintain more than 78% for 80 min at 25 °C, pH = 7.0, (NH2)2CO concentration of 5 wt%, FeIIEDTA concentration of 0.02 M, O2 concentration of 7% (v/v), and Na2SO3 concentration of 0.2 M.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Ácido Edético/química , Compostos Ferrosos/química , Óxido Nítrico/isolamento & purificação , Ureia/química , Absorção Fisico-Química , Desnitrificação , Cinética , Oxirredução , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...