Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(46)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33188015

RESUMO

High-performance lightweight materials are urgently needed, given the pressing quest for weight reduction and the associated energy savings and emission reduction. Here, by incorporating the multi-principal element feature of compositionally complex alloys, we develop the concept of lightweight steels further and propose a new class of compositionally complex steels (CCSs). This approach allows us to use the high solid solution strengthening and shift the alloys' compositions into previously unattainable phase regions where both nanosized shearable κ-carbides and non-shearable B2 particles are simultaneously formed. The achievement of dual-nanoprecipitation in our CCSs leads to materials with ultrahigh specific tensile strength (up to 260 MPa·cm3 g-1) and excellent tensile elongation (13 to 38%), a combination outperforming all other high-strength high-entropy alloys and advanced lightweight steels. Our concept of CCSs is thus useful for guiding the design of ultrastrong lightweight metallic materials.

2.
Sci Adv ; 6(25): eaba7802, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596465

RESUMO

Noise and mechanical vibrations not only cause damage to devices, but also present major public health hazards. High-damping alloys that eliminate noise and mechanical vibrations are therefore required. Yet, low operating temperatures and insufficient strength/ductility ratios in currently available high-damping alloys limit their applicability. Using the concept of high-entropy alloy (HEA), we present a class of high-damping materials. The design is based on refractory HEAs, solid-solutions doped with either 2.0 atomic % oxygen or nitrogen, (Ta0.5Nb0.5HfZrTi)98O2 and (Ta0.5Nb0.5HfZrTi)98N2. Via Snoek relaxation and ordered interstitial complexes mediated strain hardening, the damping capacity of these HEAs is as high as 0.030, and the damping peak reaches up to 800 K. The model HEAs also exhibit a high tensile yield strength of ~1400 MPa combined with a large ductility of ~20%. The high-temperature damping properties, together with superb mechanical properties make these HEAs attractive for applications where noise and vibrations must be reduced.

3.
Sci Bull (Beijing) ; 63(6): 362-368, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658873

RESUMO

In this study, mechanical tests were conducted on a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10-4-104 s-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical properties. Microstructures of various samples both before and after deformation were examined using electron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the massive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of ∼63% are obtained at 2.3 × 103 s-1, indicating that the alloy has great potential for energy absorption upon impact loading.

4.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28590527

RESUMO

High-entropy alloys (HEAs) in which interesting physical, chemical, and structural properties are being continuously revealed have recently attracted extensive attention. Body-centered cubic (bcc) HEAs, particularly those based on refractory elements are promising for high-temperature application but generally fail by early cracking with limited plasticity at room temperature, which limits their malleability and widespread uses. Here, the "metastability-engineering" strategy is exploited in brittle bcc HEAs via tailoring the stability of the constituent phases, and transformation-induced ductility and work-hardening capability are successfully achieved. This not only sheds new insights on the development of HEAs with excellent combination of strength and ductility, but also has great implications on overcoming the long-standing strength-ductility tradeoff of metallic materials in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...