Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 4(3): eaao6653, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29670938

RESUMO

Atomically thin semiconducting crystals [such as molybdenum disulfide (MoS2)] have outstanding electrical, optical, and mechanical properties, thus making them excellent constitutive materials for innovating new two-dimensional (2D) nanoelectromechanical systems (NEMS). Although prototype structures have recently been demonstrated toward functional devices such as ultralow-power, high-frequency tunable oscillators and ultrasensitive resonant transducers, both electrical tunability and large dynamic range (DR) are critical and desirable. We report the first experimental demonstration of clearly defined single-, bi-, and trilayer MoS2 2D resonant NEMS operating in the very high frequency band (up to ~120 MHz) with outstanding electrical tunability and DR. Through deterministic measurement and calibration, we discover that these 2D atomic layer devices have remarkably broad DR (up to ~70 to 110 dB), in contrast to their 1D NEMS counterparts that are expected to have limited DR. These 2D devices, therefore, open avenues for efficiently tuning and strongly coupling the electronic, mechanical, and optical properties in atomic layer semiconducting devices and systems.

2.
ACS Nano ; 11(12): 12257-12265, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29182851

RESUMO

Manipulation of spin degree of freedom (DOF) of electrons is the fundamental aspect of spintronic and valleytronic devices. Two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit an emerging valley pseudospin, in which spin-up (-down) electrons are distributed in a +K (-K) valley. This valley polarization gives a DOF for spintronic and valleytronic devices. Recently, magnetic exchange interactions between graphene and magnetic insulator yttrium iron garnet (YIG) have been exploited. However, the physics of 2D TMDCs with YIG have not been shown before. Here we demonstrate strong many-body effects in a heterostructure geometry comprising a MoS2 monolayer and YIG. High-order trions are directly identified by mapping absorption and photoluminescence at 12 K. The electron doping density is up to ∼1013 cm-2, resulting in a large splitting of ∼40 meV between trions and excitons. The trions exhibit a high circular polarization of ∼80% under optical pumping by circularly polarized light at ∼1.96 eV; it is confirmed experimentally that both phonon scattering and electron-hole exchange interaction contribute to the valley depolarization with temperature; importantly, a magnetoresistance (MR) behavior in the MoS2 monolayer was observed, and a giant MR ratio of ∼30% is achieved, which is 1 order of magnitude larger than the reported ratio in MoS2/CoFe2O4 heterostructures. Our experimental results confirm that the giant MR behaviors are attributed to the interfacial spin accumulation due to YIG substrates. Our work provides an insight into spin manipulation in a heterostructure of monolayer materials and magnetic substrates.

3.
Phys Rev Lett ; 113(2): 026803, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062219

RESUMO

Exciton binding energy and excited states in monolayers of tungsten diselenide (WSe(2)) are investigated using the combined linear absorption and two-photon photoluminescence excitation spectroscopy. The exciton binding energy is determined to be 0.37 eV, which is about an order of magnitude larger than that in III-V semiconductor quantum wells and renders the exciton excited states observable even at room temperature. The exciton excitation spectrum with both experimentally determined one- and two-photon active states is distinct from the simple two-dimensional (2D) hydrogenic model. This result reveals significantly reduced and nonlocal dielectric screening of Coulomb interactions in 2D semiconductors. The observed large exciton binding energy will also have a significant impact on next-generation photonics and optoelectronics applications based on 2D atomic crystals.

4.
Sci Rep ; 4: 3919, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24472853

RESUMO

Mechanical exfoliation is a convenient and effective approach to deriving two-dimensional (2D) nanodevices from layered materials; but it is also generally perceived as unpreferred as it often yields devices with structural irregularities and nonidealities. Here we show that such nonidealities can lead to new and engineerable features that should be embraced and exploited. We measure and analyze high frequency nanomechanical resonators based on exfoliated 2D molybdenum disulfide (MoS2) structures, and focus on investigating the effects of structural nonidealities and asymmetries on device characteristics and performance. In high and very high frequency (HF/VHF) vibrating MoS2 devices based on diaphragms of ~2-5 µm in size, structural nonidealities in shape, boundary, and geometric symmetry all appear not to compromise device performance, but lead to robust devices exhibiting new multimode resonances with characteristics that are inaccessible in their 'ideal' counterparts. These results reveal that the seemingly irregular and nonideal 2D structures can be exploited and engineered for new designs and functions.

5.
ACS Nano ; 7(7): 6086-91, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23738924

RESUMO

Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on the demonstration of movable and vibrating MoS2 nanodevices, where MoS2 diaphragms as thin as 6 nm (a stack of 9 monolayers) exhibit fundamental-mode nanomechanical resonances up to f0 ~ 60 MHz in the very high frequency (VHF) band, and frequency-quality (Q) factor products up to f0 × Q ~ 2 × 10(10)Hz, all at room temperature. The experimental results from many devices with a wide range of thicknesses and lateral sizes, in combination with theoretical analysis, quantitatively elucidate the elastic transition regimes in these ultrathin MoS2 nanomechanical resonators. We further delineate a roadmap for scaling MoS2 2D resonators and transducers toward microwave frequencies. This study also opens up possibilities for new classes of vibratory devices to exploit strain- and dynamics-engineered ultrathin semiconducting 2D crystals.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Molibdênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Sulfetos/química , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula , Semicondutores , Vibração
6.
Nano Lett ; 13(6): 2931-6, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23675872

RESUMO

We demonstrate the continuous tuning of the electronic structure of atomically thin MoS2 on flexible substrates by applying a uniaxial tensile strain. A redshift at a rate of ~70 meV per percent applied strain for direct gap transitions, and at a rate 1.6 times larger for indirect gap transitions, has been determined by absorption and photoluminescence spectroscopy. Our result, in excellent agreement with first principles calculations, demonstrates the potential of two-dimensional crystals for applications in flexible electronics and optoelectronics.

7.
Nat Nanotechnol ; 8(4): 271-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23455984

RESUMO

In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties. Directional optical properties can be exploited to enhance the performance of optoelectronic devices, optomechanical actuators and metamaterials. In layered materials, optical anisotropies may result from in-plane and out-of-plane dipoles associated with intra- and interlayer excitations, respectively. Here, we resolve the orientation of luminescent excitons and isolate photoluminescence signatures arising from distinct intra- and interlayer optical transitions. Combining analytical calculations with energy- and momentum-resolved spectroscopy, we distinguish between in-plane and out-of-plane oriented excitons in materials with weak or strong interlayer coupling-MoS2 and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), respectively. We demonstrate that photoluminescence from MoS2 mono-, bi- and trilayers originates solely from in-plane excitons, whereas PTCDA supports distinct in-plane and out-of-plane exciton species with different spectra, dipole strengths and temporal dynamics. The insights provided by this work are important for understanding fundamental excitonic properties in nanomaterials and designing optical systems that efficiently excite and collect light from exciton species with different orientations.

8.
Nat Mater ; 12(3): 207-11, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23202371

RESUMO

Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties. In contrast to graphene, monolayer MoS(2) is a non-centrosymmetric material with a direct energy gap. Strong photoluminescence, a current on/off ratio exceeding 10(8) in field-effect transistors, and efficient valley and spin control by optical helicity have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS(2) field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.

9.
Nat Nanotechnol ; 7(8): 494-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22706698

RESUMO

Electronic and spintronic devices rely on the fact that free charge carriers in solids carry electric charge and spin. There are, however, other properties of charge carriers that might be exploited in new families of devices. In particular, if there are two or more minima in the conduction band (or maxima in the valence band) in momentum space, and if it is possible to confine charge carriers in one of these valleys, then it should be possible to make a valleytronic device. Valley polarization, as the selective population of one valley is designated, has been demonstrated using strain and magnetic fields, but neither of these approaches allows dynamic control. Here, we demonstrate that optical pumping with circularly polarized light can achieve complete dynamic valley polarization in monolayer MoS(2) (refs 11, 12), a two-dimensional non-centrosymmetric crystal with direct energy gaps at two valleys. Moreover, this polarization is retained for longer than 1 ns. Our results, and similar results by Zeng et al., demonstrate the viability of optical valley control and suggest the possibility of valley-based electronic and optoelectronic applications in MoS(2) monolayers.


Assuntos
Eletrônica/instrumentação , Molibdênio/química , Semicondutores/instrumentação , Luminescência , Fenômenos Ópticos , Óptica e Fotônica , Pontos Quânticos
10.
J Chem Phys ; 129(23): 234708, 2008 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19102553

RESUMO

We propose a spin diode based on an organic magnetic co-oligomer or a magnetic/nonmagnetic heterojunction structure. The current and its spin polarization in the device are calculated with the spin-dependent Landauer-Büttiker formula. It is found that, by reversing the applied bias, the charge current and the spin current (SC) may be rectified at the same time or separately. A normal charge-current rectification usually takes place if the spatial electric structure is asymmetric. While a spin-current rectification may appear in two forms or their combination: one is that the spin-polarized orientation keeps unchanged but the magnitude of the SC is asymmetric with the bias; another is that only the spin orientation of the SC flips when the bias is reversed. By designing a suitable organic spin device, either of the two kinds of spin-current rectifications is obtained in our calculations. Finally, the effects of the properties of the organic interlayer and the structural asymmetry on the rectification are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA