Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 12(18): 7681-7698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451864

RESUMO

Rationale: Increased lipid droplet (LD) formation has been linked to tumor metastasis, stemness, and chemoresistance in various types of cancer. Here, we revealed that LD formation is critical for the adaptation to sorafenib in hepatocellular carcinoma (HCC) cells. We aim to investigate the LD function and its regulatory mechanisms in HCC. Methods: The key proteins responsible for LD formation were screened by both metabolomics and proteomics in sorafenib-resistant HCC cells and further validated by immunoblotting and immunofluorescence staining. Biological function of AKR1C3 was evaluated by CRISPR/Cas9-based gene editing. Isotopic tracing analysis with deuterium3-labeled palmitate or carbon13-labeled glucose was conducted to investigate fatty acid (FA) and glucose carbon flux. Seahorse analysis was performed to assess the glycolytic flux and mitochondrial function. Selective AKR1C3 inhibitors were used to evaluate the effect of AKR1C3 inhibition on HCC tumor growth and induction of autophagy. Results: We found that long-term sorafenib treatment impairs fatty acid oxidation (FAO), leading to LD accumulation in HCC cells. Using multi-omics analysis in cultured HCC cells, we identified that aldo-keto reductase AKR1C3 is responsible for LD accumulation in HCC. Genetic loss of AKR1C3 fully depletes LD contents, navigating FA flux to phospholipids, sphingolipids, and mitochondria. Furthermore, we found that AKR1C3-dependent LD accumulation is required for mitigating sorafenib-induced mitochondrial lipotoxicity and dysfunction. Pharmacologic inhibition of AKR1C3 activity instantly induces autophagy-dependent LD catabolism, resulting in mitochondrial fission and apoptosis in sorafenib-resistant HCC clones. Notably, manipulation of AKR1C3 expression is sufficient to drive the metabolic switch between FAO and glycolysis. Conclusions: Our findings revealed that AKR1C3-dependent LD formation is critical for the adaptation to sorafenib in HCC through regulating lipid and energy homeostasis. AKR1C3-dependent LD accumulation protects HCC cells from sorafenib-induced mitochondrial lipotoxicity by regulating lipophagy. Targeting AKR1C3 might be a promising therapeutic strategy for HCC tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Sorafenibe/farmacologia , Gotículas Lipídicas , Neoplasias Hepáticas/tratamento farmacológico , Ácidos Graxos , Glucose , Membro C3 da Família 1 de alfa-Ceto Redutase
2.
Artigo em Inglês | MEDLINE | ID: mdl-34938341

RESUMO

OBJECTIVE: Saponins are a group of compounds from various plants, which exhibit an anticancer activity. This study aimed to explore the anticancer effect of zingiberensis newsaponin (ZnS) against hepatocellular carcinoma (HCC) and the underlying mechanism involving autophagy. METHODS: HCC cells (Huh7 and SMMC7721) were treated with ZnS and/or 3-MA. The cell viability, migration, and apoptosis were determined using CCK-8 assay, transwell assay, and flow cytometry, respectively. The levels of oxidative stress markers (ROS, SOD, and MDA) were measured by ELISA assay. Autophagy was monitored using MDC assay, immunofluorescence staining, and transmission electron microscopy. The relative protein expression of LC3II/LC3I, P62, AKR1C1, p-JAK2, p-STAT3, JAK2, and STAT3 was determined using Western blot. RESULTS: ZnS or 3-MA inhibited the cell viability and migration, and it promoted cell apoptosis and oxidative stress in HCC. MDC-positive cells and autophagosomes were reduced by ZnS or 3-MA treatment. The expression of autophagy-related proteins LC3 (LC3II/LC3I) and P62 was, respectively, downregulated and upregulated after ZnS or 3-MA treatment. In addition, ZnS or 3-MA suppressed the protein expression of AKR1C1, p-JAK2, and p-STAT3 in HCC cells. Furthermore, the above phenomena were evidently enhanced by ZnS combined 3-MA treatment. AKR1C1 overexpression weakened the effect of ZnS on inhibiting the expression of AKR1C1, p-JAK2, and p-STAT3. CONCLUSION: ZnS exerts an anticancer effect on HCC via inhibiting autophagy moderated by the AKR1C1-mediated JAK2/STAT3 pathway. ZnS and 3-MA exert a synergistic effect on inhibiting HCC.

3.
Front Pharmacol ; 12: 678620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012402

RESUMO

Background: The etiology and carcinogenesis of hepatocellular carcinoma (HCC) are associated with various risk factors. Saponins extracted from Dioscorea zingiberensis C. H. Wright exhibit antitumor activity against HCC. This study aimed to investigate the effect and the underlying mechanism of Dioscorea Zingiberensis new saponin (ZnS) on HCC. Methods: Human HCC cell lines, Huh7 and SMMC-7721, were treated with different concentrations of ZnS. Cell apoptosis was determined via flow cytometry assay. Differentially expressed lncRNAs (DElncRNAs) in ZnS-treated SMMC-7721 cells were determined through RNA-sequence. The role of lncRNA TCONS-00026762 in HCC was investigated gain of function analysis, along with cell proliferation, apoptosis, and invasion in HCC cells. A subcutaneous xenograft of SMMC-7721 cell lines was established to study the effects of TCONS-00026762 in vivo. The expression of apoptosis-related proteins was detected in vivo and in vitro via western blotting. Results: ZnS inhibited the proliferation of HCC cell in a dose-dependent manner. ZnS could induce apoptosis in HCC cells. Illumina sequencing results showed that 493 DElncRNAs were identified in ZnS-treated SMMC-7721 cells. TCONS-00026762 expression was down-regulated in the ZnS-treated SMMC-7721 cells. TCONS-00026762 inhibited the effect of ZnS on the proliferation, apoptosis, and invasion of HCC cells. ZnS inhibited the tumor growth, while, TCONS-00026762 promoted tumor growth in vivo. Furthermore, ZnS and TCONS-00026762 regulated cell apoptotic pathways. Conclusion: ZnS significantly inhibits the viability, apoptosis, invasion, and tumorigenicity of HCC cells by regulating the expression of TCONS-00026,762. Our findings provide novel insights into the potential role of lncRNA in HCC therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...