Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 269, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764018

RESUMO

Symbiotic microbial communities are crucial for human health, and dysbiosis is associated with various diseases. Plant-derived nanovesicles (PDNVs) have a lipid bilayer structure and contain lipids, metabolites, proteins, and RNA. They offer unique advantages in regulating microbial community homeostasis and treating diseases related to dysbiosis compared to traditional drugs. On the one hand, lipids on PDNVs serve as the primary substances that mediate specific recognition and uptake by bacteria. On the other hand, due to the multifactorial nature of PDNVs, they have the potential to enhance growth and survival of beneficial bacterial while simultaneously reducing the pathogenicity of harmful bacteria. In addition, PDNVs have the capacity to modulate bacterial metabolism, thus facilitating the establishment of a harmonious microbial equilibrium and promoting stability within the microbiota. These remarkable attributes make PDNVs a promising therapeutic approach for various conditions, including periodontitis, inflammatory bowel disease, and skin infection diseases. However, challenges such as consistency, isolation methods, and storage need to be addressed before clinical application. This review aims to explore the value of PDNVs in regulating microbial community homeostasis and provide recommendations for their use as novel therapeutic agents for health protection.


Assuntos
Microbiota , Humanos , Plantas , Bactérias/metabolismo , Disbiose/microbiologia , Animais , Nanopartículas/química , Nanoestruturas/química , Periodontite/microbiologia
2.
J Nanobiotechnology ; 21(1): 445, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001440

RESUMO

Tissue damage and aging lead to dysfunction, disfigurement, and trauma, posing significant global challenges. Creating a regenerative microenvironment to resist external stimuli and induce stem cell differentiation is essential. Plant-derived nanovesicles (PDNVs) are naturally bioactive lipid bilayer nanovesicles that contain proteins, lipids, ribonucleic acid, and metabolites. They have shown potential in promoting cell growth, migration, and differentiation into various types of tissues. With immunomodulatory, microbiota regulatory, antioxidant, and anti-aging bioactivities, PDNVs are valuable in resisting external stimuli and facilitating tissue repair. The unique structure of PDNVs provides an optimal platform for drug encapsulation, and surface modifications enhance their stability and specificity. Moreover, by employing synergistic administration strategies, PDNVs can maximize their therapeutic potential. This review summarized the progress and prospects of PDNVs as regenerative tools, provided insights into their selection for repair activities based on existing studies, considered the key challenge for clinical application, and anticipated their continued prominent role in the field of biomedicine.


Assuntos
Diferenciação Celular , Nanopartículas , Plantas , Plantas/química , Bicamadas Lipídicas
3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(5): 568-572, 2023 Oct 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37805681

RESUMO

OBJECTIVES: This study aimed to remove occlusal veneers of varied thicknesses and compositions by Er:Yag laser in vitro and analyze the interfacial microstructure between veneers and tooth that irradiated by laser, by which experimental evidence could be provided to support the non-invasive removal of occlusal veneerby laser. METHODS: Fresh mandibular premolars extracted for orthodontic requirements were collected for tooth preparation. Three kinds of ceramic materials (Vita Suprinity, Vita Mark Ⅱ, and Upcera Hyramic) were selected to fabricate occlusal veneer with different thicknesses (1.0, 1.5, and 2.0 mm). One week later, Er:Yag laser (2.5 W and 3.5 W) was used to irradiate and remove the occlusal veneer and recorded the timespan. After the removal operation, the micro-morphologies of samples were examined by scanning electron microscope. RESULTS: Upcera Hyramic veneer failed to be removed (>20 min); the operation span at 2.5 W, Vita Suprinity (96.0 s±16.0 s) was longer than Vita MarkⅡ(84.5 s±19.5 s) in the 1.0 mm group (P<0.05), and Vita Suprinity (246.5 s±13.5 s) was longer than Vita MarkⅡ(170.0 s±14.0 s) in the 1.5 mm group (P<0.05). At 3.5 W, Vita Suprinity (381.0 s±24.0 s) was longer than Vita MarkⅡ(341.5 s±26.5 s) in the 2.0 mm group. CONCLUSIONS: Increasing laser power could shorten the operation span and facilitate the removal of occlusal veneers with the same thickness and composition. The occlusal veneer was sustained when insufficient laser power was applied. With the same laser power and ceramic thickness, laser penetration could interfere with the integral of the ceramic structure when the laser interacted with the bonding layer. With the same ceramic composition and laser power, the operation span and laser power increased with the thickness of the occlusal veneer. However, the laser was incapable of removing occlusal resin veneer directly.


Assuntos
Lasers de Estado Sólido , Teste de Materiais , Porcelana Dentária/química , Cerâmica/química , Dente Pré-Molar , Facetas Dentárias
4.
Int J Nanomedicine ; 18: 4779-4804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635909

RESUMO

Tumors are the second-most common disease in the world, killing people at an alarming rate. As issues with drug resistance, lack of targeting, and severe side effects are revealed, there is a growing demand for precision-targeted drug delivery systems. Plant-derived nanovesicles (PDNVs), which arecomposed of proteins, lipids, RNA, and metabolites, are widely distributed and readily accessible. The potential for anti-proliferative, pro-apoptotic, and drug-resistant-reversing effects on tumor cells, as well as the ability to alter the tumor microenvironment (TME) by modulating tumor-specific immune cells, make PDNVs promising anti-tumor therapeutics. With a lipid bilayer structure that allows drug loading and a transmembrane capacity readily endocytosed by cells, PDNVs are also expected to become a new drug delivery platform. Exogenous modifications of PDNVs enhance their circulating stability, tumor targeting ability, high cell endocytosis rate, and controlled-release capacity. In this review, we summarize PDNVs' natural antitumor activity, as well as engineered PDNVs as efficient precision-targeted drug delivery tools that enhance therapeutic effects. Additionally, we discuss critical considerations related to the issues raised in this area, which will encourage researchers to improve PDNVs as better anti-tumor therapeutics for clinic applications.


Assuntos
Sistemas de Liberação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Endocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...