Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(2-1): 024130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932557

RESUMO

With the finite-tape autonomous information ratchet modeled by He et al. [Phys. Rev. E 105, 054131 (2022)2470-004510.1103/PhysRevE.105.054131], we recast the information processing second law, giving a tighter bound on the work extracted, in terms of the marginal bit-ratchet distribution defined from the joint tape-ratchet distribution. The marginal distribution is further utilized to probe and elucidate the conditions that lead to the presence of equilibrium and nonequilibrium stationary states in general, which are related to the effects of correlation. Applying our analysis to two designs of this information ratchet, where correlations within manifest differently, we uncover the mathematical condition for equilibrium stationary states for information ratchets that harness correlation, to identify them for engine operation during the transient phase.

2.
Phys Rev E ; 105(5-1): 054131, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706159

RESUMO

We model a class of discrete-time information ratchet with a finite tape and explore its thermodynamic consequence as a Maxwell demon. We found that, although it supports the operational regime of an engine or eraser, it cannot typically sustain these thermodynamic functionalities due to eventual equilibration as a result of the finite information capacity of the tape. Nonetheless, cumulative work can be accrued or expended through successive tape scans and we prove that at all time the ratchet obeys the information processing second law (IPSL). Unlike the IPSL for the infinite-tape ratchet which operates only at the stationary state, the IPSL here is applicable also at the transient phase of the ratchet operation. We explore two ratchet designs with the single-state perturbed coin (PC) ratchet being the simplest ratchet without memory, while the double-state modified Boyd's (MB) ratchet is the simplest ratchet with memory. Our analysis shows that the MB ratchet can harness correlation to accumulate more work by having a larger time constant to reach steady state relative to the PC ratchet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA