Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1388924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911977

RESUMO

Cd (cadmium) is a highly toxic heavy metal pollutant often present in soil and detrimentally impacting the production and quality of horticultural crops. Cd affects various physiological and biochemical processes in plants, including chlorophyll synthesis, photosynthesis, mineral uptake and accumulation, and hormonal imbalance, leading to cell death. The MYB family of transcription factors plays a significant role in plant response to environmental influences. However, the role of MYB116 in abiotic stress tolerance remains unclear. In this study, we reported that Chinese cabbage transcription factor BrMYB116 enhanced Cd stress tolerance in yeast. The expression level of BrMYB116 was increased by Cd stress in Chinese cabbage. Additionally, yeast cells overexpressing BrMYB116 showed improved Cd stress tolerance and reduced Cd accumulation. Moreover, we found that BrMYB116 interacted with facilitator of iron transport (FIT3) to enhance Cd stress tolerance. ChIP-qPCR results showed that ScFIT3 was activated through specific binding to its promoter. Additionally, the overexpression of ScFIT3 induced Cd stress tolerance and reduced Cd accumulation in yeast and Chinese cabbage. These results suggest new avenues for plant genomic modification to mitigate Cd toxicity and enhance the safety of vegetable production.

2.
Micromachines (Basel) ; 15(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793221

RESUMO

Vibrational environments can cause drift or changes in Micro-Electro-Mechanical System (MEMS) gyroscope rotor parameters, potentially impacting their performance. To improve the effective use of MEMS gyroscopes, this study introduced a method for evaluating the reliability of parameter degradation under vibration. We analyzed the working principle of MEMS gyroscope rotors and investigated how vibration affects their parameters. Focusing on zero bias and scale factor as key performance indicators, we developed an accelerated degradation model using the distributional assumption method. We then collected degradation data for these parameters under various vibration conditions. Using the Copula function, we established a reliability assessment approach to evaluate the degradation of the MEMS gyroscope rotor's zero bias and scale factor under vibration, enabling the determination of reliability for these parameters. Experimental findings confirmed that increasing stress levels lead to reduced failure times and increased failure rates for MEMS gyroscope rotors, with significant changes observed in the zero bias parameter. Our evaluation method effectively characterizes changes in the reliability of the MEMS gyroscope rotor's scale factor and zero bias over time, providing valuable information for practical applications of MEMS gyroscopes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA