Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(46): e202311786, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37735097

RESUMO

The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx -Fe5 C2 -Fe3 O4 , in which the electron-transfer pathway (ZnOx →Fe species or carbon layer) ensures the appropriate adsorption strength of -CO* on the catalytic interface, facilitating C-C coupling between -CHx * and -CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat -1 h-1 (with CO of 10 vol % co-feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.

2.
Chemistry ; 29(65): e202301918, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37641166

RESUMO

Even though Fe-based catalysts have been widely employed for CO2 hydrogenation into hydrocarbons, oxygenates, liquid fuels, etc., the precise regulation of their physicochemical properties is needed to enhance the catalytic performance. Herein, under the guidance of the traditional concept in heterogeneous catalysis-confinement effect, a core-shell structured catalyst Na-Fe3 O4 @C is constructed to boost the CO2 hydrogenation performance. Benefiting from the carbon-chain growth limitation, tailorable H2 /CO2 ratio on the catalytic interface, and unique electronic property that all endowed by the confinement effect, the selectivity and space-time yield of light olefins (C2 = -C4 = ) are as high as 47.4 % and 15.9 g molFe -1  h-1 , respectively, which are all notably higher than that from the shell-less counterpart. The function mechanism of the confinement effect in Fe-based catalysts are clarified in detail by multiple characterization and density functional theory (DFT). This work may offer a new prospect for the rational design of CO2 hydrogenation catalyst.

3.
Chemistry ; 29(40): e202301135, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37160742

RESUMO

Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol-mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure-function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov ) density in reducible Cr2 O3 by sequential carbonization and oxidation (SCO) treatments of Cr-based metal-organic frameworks. Thanks to the enriched Ov , Cr2 O3 -based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H-ZSM-5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H-ZSM-5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...