Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 7: 100631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021263

RESUMO

Staphylococcus aureus is widely recognized as a highly hazardous pathogen that poses significant threats to food safety and public health. This study aimed to assess the prevalence, antimicrobial resistance, and genetic characteristics of S. aureus isolates recovered from 288 frozen flour and rice product samples in Shanghai, China, between September 2019 and May 2020. A total of 81 S. aureus isolates were obtained, representing 25 sequence types (STs), with ST7 being the most prevalent (17.28%, n = 14). The majority of S. aureus isolates (85.19%, n = 69) carried at least one enterotoxin gene, with the seg gene being the most frequently detected (51.85%, n = 42). Additionally, 12 isolates (14.81%) were identified as methicillin-resistant S. aureus (MRSA) through mecA gene detection. Notably, this study reported the presence of an ST398 MRSA isolate in frozen flour and rice products for the first time. All MRSA isolates displayed multidrug resistance, with the highest resistance observed against cefoxitin (100.00%), followed by penicillin (91.67%) and erythromycin (66.67%). Genomic analysis of the 12 MRSA isolates revealed the presence of twenty distinct acquired antimicrobial resistance genes (ARGs), eight chromosomal point mutations, and twenty-four unique virulence genes. Comparative genome analysis indicated close genetic relationships between these MRSA isolates and previously reported MRSA isolates from clinical infections, highlighting the potential transmission of MRSA through the food chain and its implications for public health. Significantly, the identification of three plasmids harboring ARGs, insertion sequences (ISs), the origin of transfer site (oriT), and the relaxase gene suggested the potential for horizontal transfer of ARGs via conjugative plasmids in S. aureus. In conclusion, this study revealed significant contamination of retail frozen flour and rice products with S. aureus, and provided essential data for ensuring food safety and protecting public health.

2.
mBio ; 14(3): e0339522, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37184399

RESUMO

The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis.


Assuntos
Quinolonas , Salmonella enteritidis , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , Transcrição Gênica , Quinolonas/farmacologia , Resistência às Cefalosporinas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Regulação Bacteriana da Expressão Gênica
3.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432209

RESUMO

Salicylic acid (SA) is a natural inducer of disease resistance in fruit, but its application in the food industry is limited due to low water solubility. Here, SA was encapsulated in ß-cyclodextrin (ß-CD) via the host-guest inclusion complexation method, and the efficacy of SA microcapsules (SAM) against blue mold caused by Penicillium expansum in postharvest apple fruit was elucidated. It was observed that SAM was the most effective in inhibiting the mycelial growth of P. expansum in vitro. SAM was also superior to SA for control of blue mold under in vivo conditions. Enzyme activity analysis revealed that both SA and SAM enhanced the activities of superoxide dismutase (SOD) and phenylalanine ammonia lyase (PAL) in apple fruit, whereas SAM led to higher SOD activities than SA. Total phenolic contents in the SAM group were higher than those in the SA group at the early stage of storage. SAM also improved fruit quality by retarding firmness loss and maintaining higher total soluble solids (TSS) contents. These findings indicate that microcapsules can serve as a promising formulation to load SA for increasing P. expansum inhibition activity and improving quality attributes in apple fruit.


Assuntos
Malus , Frutas , Ácido Salicílico/farmacologia , Cápsulas , Superóxido Dismutase
4.
Artigo em Inglês | MEDLINE | ID: mdl-36232061

RESUMO

Microcapsules serve as a feasible formulation to load phenolic substances such as salicylic acid, a natural and safe antimicrobial agent. However, the antibacterial efficacy of salicylic acid microcapsules (SAMs) remains to be elucidated. Here, salicylic acid/ß-cyclodextrin inclusion microcapsules were subjected to systematic antibacterial assays and preliminary antibacterial mechanism tests using Escherichia coli and Staphylococcus aureus as target organisms. It was found that the core-shell rhomboid-shaped SAMs had a smooth surface. SAMs exhibited a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 4 mg/mL against both bacteria. In the growth inhibition assay, 1/4 × MIC, 1/2 × MIC, and 1 × MIC of SAMs effectively retarded bacterial growth, and this effect was more prominent with the rise in the level of SAMs. Practically, SAMs possessed a rapid bactericidal effect at the 1 × MIC level with a reduction of more than 99.9% bacterial population within 10 min. A pronounced sterilization activity against E. coli and S. aureus was also observed when SAMs were embedded into hand sanitizers as antimicrobial agents. Moreover, exposure of both bacteria to SAMs resulted in the leakage of intracellular alkaline phosphatases and macromolecular substances (nucleic acids and proteins), which indicated the disruption of bacterial cell walls and cell membranes. In conclusion, SAMs were able to inactivate E. coli and S. aureus both in vitro and in situ, highlighting the promising utilization of this formulation for antimicrobial purposes in the area of food safety and public health.


Assuntos
Higienizadores de Mão , Ácidos Nucleicos , beta-Ciclodextrinas , Antibacterianos/farmacologia , Bactérias , Cápsulas/farmacologia , Escherichia coli , Higienizadores de Mão/farmacologia , Testes de Sensibilidade Microbiana , Monoéster Fosfórico Hidrolases/farmacologia , Ácido Salicílico/farmacologia , Staphylococcus aureus
5.
mSphere ; 7(6): e0038322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286534

RESUMO

The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates ß-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.


Assuntos
Anti-Infecciosos , Quinolonas , Humanos , Salmonella enteritidis/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Anti-Infecciosos/farmacologia , Salmonella typhimurium/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Cefalosporinas , Quinolonas/farmacologia , Quinolonas/metabolismo
6.
Foods ; 11(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36141013

RESUMO

Fresh pork is susceptible to microbial contamination and lipid oxidation, which leads to food safety and quality issues. This study aimed to develop a kappa-carrageenan (KC) coating embedded with cinnamon essential oil (CEO) for antimicrobial and antioxidant purposes in pork meat. The uncoated controls and coated samples were subjected to microbial (total viable count, lactic acid bacteria, and H2S-producing bacteria), chemical (DPPH and pH), and physical (surface color) analyses during refrigerated storage at 4 °C for 7 days. It was observed that KC coatings exhibited a better preservation effect on pork meat after the addition of CEO. The KC−CEO coatings were effective in retarding the growth of total viable count, lactic acid bacteria, and H2S-producing bacteria. In a DPPH test, the level of lipid oxidation in pork meat was also significantly (p < 0.05) reduced by the KC−CEO coatings. Furthermore, these coatings displayed pronounced activity in inhibiting the adverse alterations of pH value and surface color. Practically, KC−CEO-coated samples still exhibited an attractive bright red color at the end of refrigerated storage. Taken together, the developed KC−CEO coatings exerted pronounced antimicrobial and antioxidant activities in pork, thus providing a potential approach to preserving perishable meat.

7.
Foods ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36141039

RESUMO

Salmonella Enteritidis (S. Enteritidis) can adapt to sublethal sodium hypochlorite conditions, which subsequently triggers stress resistance mechanisms in this pathogen. Hence, the current work aimed to reveal the underlying stress adaptation mechanisms in S. Enteritidis by phenotypic, proteomic, and physiological analyses. It was found that 130 ppm sodium hypochlorite resulted in a moderate inhibitory effect on bacterial growth and an increased accumulation of intracellular reactive oxygen species. In response to this sublethal treatment, a total of 492 proteins in S. Enteritidis showed significant differential abundance (p < 0.05; fold change >2.0 or <0.5), including 225 more abundant proteins and 267 less abundant proteins, as revealed by the tandem-mass-tags-based quantitative proteomics technology. Functional characterization further revealed that proteins related to flagellar assembly, two-component system, and phosphotransferase system were in less abundance, while those associated with ABC transporters were generally in more abundance. Specifically, the repression of flagellar-assembly-related proteins led to diminished swimming motility, which served as a potential energy conservation strategy. Moreover, altered abundance of lipid-metabolism-related proteins resulted in reduced cell membrane fluidity, which provided a survival advantage to S. Enteritidis. Taken together, these results indicate that S. Enteritidis employs multiple adaptation pathways to cope with sodium hypochlorite stress.

8.
Foods ; 11(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954005

RESUMO

The survival of Salmonella Enteritidis in the food chain is relevant to its biofilm formation capacity, which is influenced by suboptimal environmental conditions. Here, biofilm formation pattern of this bacterium was assessed in the presence of ethanol at sub-minimal inhibitory concentrations (sub-MICs) by microtiter plate assays, cell characteristic analyses, and gene expression tests. It was observed that ethanol at subinhibitory concentrations (1/4 MIC, 2.5%; 1/2 MIC, 5.0%) was able to stimulate biofilm formation in S. Enteritidis. The OD595 value (optical density at 595 nm) used to quantify biofilm production was increased from 0.14 in control groups to 0.36 and 0.63 under 2.5% and 5.0% ethanol stresses, respectively. Ethanol was also shown to reduce bacterial swimming motility and enhance cell auto-aggregation ability. However, other cell characteristics such as swarming activity, initial attachment and cell surface hydrophobicity were not remarkedly impacted by ethanol. Reverse transcription quantitative real-time PCR (RT-qPCR) analysis further revealed that the luxS gene belonging to a quorum-sensing system was upregulated by 2.49- and 10.08-fold in the presence of 2.5% and 5.0% ethanol, respectively. The relative expression level of other biofilm-related genes (adrA, csgB, csgD, and sdiA) and sRNAs (ArcZ, CsrB, OxyS, and SroC) did not obviously change. Taken together, these findings suggest that decrease in swimming motility and increase in cell auto-aggregation and quorum sensing may result in the enhancement of biofilm formation by S. Enteritidis under sublethal ethanol stress.

9.
Microbiol Spectr ; 10(4): e0011522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862948

RESUMO

Salmonella enterica serovar Indiana (S. Indiana) is an extremely expanded foodborne pathogen in China in recent years. This study aimed to elucidate the national prevalence and phylogenomic characterization of this pathogen in China. Among 5, 287 serotyped Salmonella isolates collected during 2002 to 2018, 466 S. Indiana isolates were found in 15 provinces, and 407 were identified to be ST17, and the rest were ST2040. Among 407 ST17 isolates, 372 (91.4%) were multidrug resistant, and 366 (89.9%) were resistant to ciprofloxacin, 235 (57.7%) were further resistant to ceftriaxone. Phylogenomic analysis revealed that ST17 isolates were classified into four clades (I, II, III and IV), which appeared in international clonal dissemination. ST17 isolates from China fell into Clade IV with part of isolates from the United Kingdom, the United States, South Korea, and Thailand, suggesting their close genetic relationship. Mutations in quinolone resistance-determining regions (QRDR) of GyrA and ParC, and plasmid-mediated quinolone resistance (PMQR) genes aac(6')-Ib-cr, oqxAB, and qnrS as well as extended spectrum ß-lactamases (ESBL) genes blaCTX-M, blaOXA, and blaTEM in isolates from Clade IV were much higher than those from other three clades. Various blaCTX-M subtypes (blaCTX-M-65, blaCTX-M-55, blaCTX-M-27, blaCTX-M-14, and blaCTX-M-123) with ISEcp1, IS903B, ISVsa5, and IS1R were found in ST17 isolates, especially Tn1721 containing ΔISEcp1-blaCTX-M-27-IS903B in P1-like bacteriophage plasmids. These findings on the prevalent and genomic characterization for the S. Indiana multidrug-resistant ST17 clone in China, which have not been reported yet, provide valuable insights into the potential risk of this high-resistant clone. IMPORTANCE Fluoroquinolones and cephalosporins are the primary choices for severe salmonellosis treatment. S. Indiana has become one of the most prevalent serovars in breeding poultry and poultry meats in China in recent years. ST17 was recognized as the leading epidemiological importance in S. Indiana because of its high-level resistance to the most of common antibiotics, including ciprofloxacin and ceftriaxone. However, the prevalence and phylogenomic characterization of ST17 isolates are unclear. Here, we did a retrospective screening on a large scale for S. Indiana in China, and performed its phylogenomic analysis. It was found that ST17 isolates had extensive spread in 15 provinces of China and became a multidrug-resistant clone. The international spread of the ST17 isolates was observed among several countries, especially China, the United Kingdom, and the United States. Our study emphasized the importance of surveillance of a high-resistant S. Indiana ST17 clone to combat its threat to public health.


Assuntos
Quinolonas , Salmonella enterica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftriaxona , Ciprofloxacina/uso terapêutico , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Estudos Retrospectivos , Salmonella enterica/genética , Sorogrupo , beta-Lactamases/genética
10.
Curr Res Food Sci ; 5: 798-806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600539

RESUMO

Adaptation to sublethal amounts of ethanol enables Salmonella Enteritidis to survive under normally lethal ethanol conditions, which is referred to as the ethanol tolerance response (ETR). To uncover mechanisms underlying this adaptative response, RNA-seq and RT-qPCR techniques were employed to reveal global gene expression patterns in S. Enteritidis after sublethal ethanol treatment. It was observed that 811 genes were significantly differentially expressed in ethanol-treated cells compared with control cells, among which 328 were up-regulated and 483 were down-regulated. Functional analysis revealed that these genes were enriched in different pathways, including signal transduction, membrane transport, metabolism, transcription, translation, and cell motility. Specifically, a couple of genes encoding histidine kinases and response regulators in two-component systems were up-regulated to activate sensing and signaling pathways. Membrane function was also influenced by ethanol treatment since ABC transporter genes for transport of glutamate, phosphate, 2-aminoethylphosphonate, and osmoprotectant were up-regulated, while those for transport of iron complex, manganese, and ribose were down-regulated. Accompanied with this, diverse gene expression alterations related to the metabolism of amino acids, carbohydrates, vitamins, and nucleotides were observed, which suggested nutritional requirements for S. Enteritidis to mount the ETR. Furthermore, genes associated with ribosomal units, bacterial chemotaxis, and flagellar assembly were generally repressed as a possible energy conservation strategy. Taken together, this transcriptomic study indicates that S. Enteritidis employs multiple genes and adaptation pathways to develop the ETR.

11.
Microbiol Spectr ; 10(1): e0152221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107349

RESUMO

Bacterial small RNAs (sRNAs) function as vital regulators in response to various environmental stresses by base pairing with target mRNAs. The sRNA DsrA, an important posttranscriptional regulator, has been reported to play a crucial role in defense against oxidative stress in Salmonella enterica serovar Typhimurium, but its regulatory mechanism remains unclear. The transcriptome sequencing (RNA-seq) results in this study showed that the genes involved in glycolysis, pyruvate metabolism, the tricarboxylic acid (TCA) cycle, and NADH-dependent respiration exhibited significantly different expression patterns between S. Typhimurium wild type (WT) and the dsrA deletion mutant (ΔdsrA strain) before and after H2O2 treatment. This indicated the importance of DsrA in regulating central carbon metabolism (CCM) and NAD(H) homeostasis of S. Typhimurium. To reveal the direct target of DsrA action, fusion proteins of six candidate genes (acnA, srlE, tdcB, nuoH, katG, and pflB) with green fluorescent protein (GFP) were constructed, and the fluorescence analysis showed that the expression of pflB encoding pyruvate-formate lyase was repressed by DsrA. Furthermore, site-directed mutagenesis and RNase E-dependent experiments showed that the direct base pairing of DsrA with pflB mRNA could recruit RNase E to degrade pflB mRNA and reduce the stability of pflB mRNA. In addition, the NAD+/NADH ratio in WT-ppflB-pdsrA was significantly lower than that in WT-ppflB, suggesting that the repression of pflB by DsrA could contribute greatly to the redox balance in S. Typhimurium. Taken together, a novel target of DsrA was identified, and its regulatory role was clarified, which demonstrated that DsrA could modulate CCM and redox balance by directly repressing pflB expression in S. Typhimurium. IMPORTANCE Small RNA DsrA plays an important role in defending against oxidative stress in bacteria. In this study, we identified a novel target (pflB, encoding pyruvate-formate lyase) of DsrA and demonstrated its potential regulatory mechanism in S. Typhimurium by transcriptome analysis. In silico prediction revealed a direct base pairing between DsrA and pflB mRNA, which was confirmed in site-directed mutagenesis experiments. The interaction of DsrA-pflB mRNA could greatly contribute to the regulation of central carbon metabolism and intracellular redox balance in S. Typhimurium. These findings provided a better understanding of the critical roles of small RNA in central metabolism and stress responses in foodborne pathogens.


Assuntos
Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico , NAD/metabolismo , Oxirredução , Ácido Pirúvico/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo
12.
Foodborne Pathog Dis ; 18(8): 510-518, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34242111

RESUMO

Food safety is a major public health issue worldwide, especially in heavily populated countries such as China. As in other countries, the predominant food safety issues in China are foodborne diseases caused by microbial pathogens. Hence, this review provides a systematic overview on microbial food safety in the past, present, and future in China. Management of microbial food safety in China is generally divided into three stages: Stage I before 2000, Stage II from 2000 to 2009, and Stage III from 2010 to present. At Stage I, China's main food concern gradually shifted from food security to food safety. At Stage II, foodborne pathogen surveillance was initiated and gradually became a focus of microbial food safety marked by the establishment of national food contamination monitoring system in 2000 and the promulgation of China Food Safety Law in 2009, although chemical food safety was considered a priority issue during this stage. At Stage III, microbial food safety was recognized as a high priority supported by many national food safety policies such as the launch of a national foodborne disease molecular tracing network in 2013 and the revision of China Food Safety Law in 2015. Advancement in food safety education and research support by central and local governments has also made significant contributions to tackling and solving microbial food safety problems. Management in the future should be focused on active involvement of food industries in mitigating microbial risks by introducing ISO 22000, regulatory enforcement to oversee compliances to standards and rules, and application of molecular tools for fast detection and source tracking to support decision-making. Future research efforts may include, but are not limited to, exploitation of interaction mechanisms among pathogenic bacteria, food and gut microbiota, smart traceability of microbial hazards, and development of novel antimicrobial strategies.


Assuntos
Indústria Alimentícia/tendências , Microbiologia de Alimentos/tendências , Inocuidade dos Alimentos , China , Indústria Alimentícia/legislação & jurisprudência , Microbiologia de Alimentos/legislação & jurisprudência , Humanos
13.
Foodborne Pathog Dis ; 18(10): 702-711, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33534635

RESUMO

Salmonella Enteritidis is an important foodborne pathogen with high prevalence of resistance to cephalosporins, imposing a serious threat to public health. Therefore, a total of 162 Salmonella Enteritidis isolates collected from child patients in China from 2007 to 2017 were characterized for their resistance to cephalosporins and investigated the transmission characteristics of cephalosporin resistance gene. We found that 15 (9.26%) isolates were all resistant to cefalotin (minimum inhibitory concentration [MIC] ≥512 µg/mL), ceftazidime (MIC 16-128 µg/mL), ceftriaxone (MIC 64 to ≥512 µg/mL), ceftiofur (MIC 64-256 µg/mL), and cefotaxime (MIC 64 to ≥512 µg/mL) with the possession of cephalosporin resistance genes blaCTX-M-55 (n = 13), blaCTX-M-101 (n = 1), and blaCTX-M-153 (n = 1). Molecular typing further revealed that these 15 isolates belonged to sequence type ST11 and shared close pulsed-field gel electrophoresis patterns, suggesting the possibility of clonal spread in Salmonella Enteritidis interspecies. Furthermore, conjugation experiments were successfully performed in 13 of 15 isolates, and blaCTX-M-55 was present on conjugative plasmids with sizes ranging from 54.7 to 173.4 kb. Compared with recipient Escherichia coli C600, transconjugants conferred elevated MICs for cephalosporins ranging from 2- to 2048-fold. The genetic structure surrounding of blaCTX-M-55 gene in transconjugants were ΔISEcp1-blaCTX-M-55-orf477 (n = 8) and ISEcp1-blaCTX-M-55-orf477 (n = 3), respectively. Taken together, blaCTX-M on the plasmids might contribute to cephalosporin resistance in Salmonella Enteritidis, and conjugative transfer of blaCTX-M-55 might facilitate the spread of cephalosporin resistance in Salmonella Enteritidis. Hence, effective mitigation measurements are needed to reduce the threat caused by cephalosporin-resistant Salmonella Enteritidis to public health.


Assuntos
Antibacterianos , Salmonella enteritidis , Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Cefalosporinas/farmacologia , Criança , Diarreia , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella enteritidis/genética , beta-Lactamases/genética
14.
Crit Rev Food Sci Nutr ; 61(5): 777-787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32274932

RESUMO

Foodborne pathogens possess the ability to develop adaptive responses to sublethal environmental stresses, leading to increased tolerance to homologous or heterologous stressing agents commonly applied during food manufacturing. This phenomenon may counteract the effectiveness of current intervention strategies to ensure food safety, thus increasing consumer risk. Foodborne pathogens encounter ethanol, a common food component and a widely used food processing agent, in a variety of niches during their life cycles. The present contribution provides an overview of the influence of adaptation to sublethal doses of ethanol on the stress tolerance of major foodborne pathogens (e.g. Salmonella enterica, Vibrio parahaemolyticus, Listeria monocytogenes, Bacillus cereus, and Cronobacter sakazakii). Fundamental studies on ethanol adaptation mechanisms with a focus on cell membrane properties, gene expression patterns, protein profiles, and mutagenic analyses are discussed. Furthermore, knowledge gaps on effective mitigation of ethanol adaptation in foodborne pathogens are identified and addressed.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes , Adaptação Fisiológica , Etanol , Inocuidade dos Alimentos
15.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375481

RESUMO

Salmonella enterica subsp. enterica serovar Enteritidis is able to adapt to sublethal concentrations of ethanol, which subsequently induce tolerance of this pathogen to normally lethal ethanol challenges. This work aims to elucidate the underlying ethanol adaptation mechanisms of S Enteritidis by proteomic and mutagenic analyses. The global proteomic response of S Enteritidis to ethanol adaptation (5% ethanol for 1 h) was determined by isobaric tags for relative and absolute quantification (iTRAQ), and it was found that a total of 138 proteins were differentially expressed in ethanol-adapted cells compared to nonadapted cells. A total of 56 upregulated proteins were principally associated with purine metabolism and as transporters for glycine betaine, phosphate, d-alanine, thiamine, and heme, whereas 82 downregulated proteins were mainly involved in enterobactin biosynthesis and uptake, the ribosome, flagellar assembly, and virulence. Moreover, mutagenic analysis further revealed the functions of two highly upregulated proteins belonging to purine metabolism (HiuH, 5-hydroxyisourate hydrolase) and glycine betaine transport (ProX, glycine betaine-binding periplasmic protein) pathways. Deletion of either hiuH or proX resulted in the development of a stronger ethanol tolerance response, suggesting negative regulatory roles in ethanol adaptation. Collectively, this work suggests that S Enteritidis employs multiple strategies to coordinate ethanol adaptation.IMPORTANCE Stress adaptation in foodborne pathogens has been recognized as a food safety concern since it may compromise currently employed microbial intervention strategies. While adaptation to sublethal levels of ethanol is able to induce ethanol tolerance in foodborne pathogens, the molecular mechanism underlying this phenomenon is poorly characterized. Hence, global proteomic analysis and mutagenic analysis were conducted in the current work to understand the strategies employed by Salmonella enterica subsp. enterica serovar Enteritidis to respond to ethanol adaptation. It was revealed that coordinated regulation of multiple pathways involving metabolism, ABC transporters, regulators, enterobactin biosynthesis and uptake, the ribosome, flagellar assembly, and virulence was responsible for the development of ethanol adaptation response in this pathogen. Such knowledge will undoubtedly contribute to the development and implementation of more-effective food safety interventions.


Assuntos
Adaptação Fisiológica , Etanol/metabolismo , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , Glicina , Mutagênese , Proteoma/metabolismo , Purinas/metabolismo , Estresse Fisiológico , Regulação para Cima
16.
J Food Sci ; 84(3): 599-605, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30730584

RESUMO

Acid adaptation in Salmonella Enteritidis was characterized by phenotypic and gene-expression analyses. S. Enteritidis cells at log-phase and stationary-phase were kept at pH 4.5 to 6.0 for 1 to 4 hours. All treatments induced various levels of acid tolerance response that were dependent on pH, exposure time and growth phase. This acid adaptation resulted in tolerance to 50 °C and 8% NaCl regardless of the growth phase. However, the tolerance of log-phase and stationary-phase cells to low temperatures (4 and -20 °C) was increased and decreased, respectively. RT-qPCR analysis revealed that genes involved in tolerance to acid (SEN1564A and cfa), heat (rpoH, uspB, and htrA), salt (proP, proV, and osmW), and cold (cspA, cspC, and csdA) stress were generally upregulated after acid adaptation. These results provide an initial insight into mechanisms of acid adaptation and induced cross protection in S. Enteritidis. PRACTICAL APPLICATION: Stress tolerance acquisition resulting from acid adaptation in foodborne pathogens poses a great threat to food safety. The current work showed that acid adaptation induced direct tolerance and cross-tolerance to high temperature, low temperature, and salt in Salmonella Enteritidis, possibly due to the upregulation of stress tolerance-related genes. These results provide key insights into acid adaptation mechanisms and efficient control of S. Enteritidis.


Assuntos
Ácidos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Salmonella enteritidis/efeitos dos fármacos , Temperatura Baixa , Temperatura Alta , Concentração de Íons de Hidrogênio , Cloreto de Sódio
17.
Microorganisms ; 7(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641977

RESUMO

Utilization of sublethal concentrations of cinnamon essential oil (CEO) for food preservation has been proposed. However, exposure to stressful, sublethal growth conditions may induce bacterial tolerance to homologous or heterologous stressing agents. Hence, the ability of CEO to stimulate bacterial stress response was evaluated in the current work. Staphylococcus aureus was exposed to 1/4 and 1/2 of the minimum inhibitory concentration (MIC, 500 µL/L) of CEO for 18 h. It was found that overnight habituation to CEO failed to induce direct tolerance and cross-tolerance to lactic acid (pH 4.5), NaCl (10 g/100 mL) and high temperature (45 °C) in S. aureus. Likewise, S. aureus cells subjected to successive habituation with increasing amounts (1/16 MIC to 2× MIC) of CEO developed no direct tolerance. Taken together, CEO has no inductive effect on the acquisition of stress tolerance in S. aureus.

18.
Int J Food Microbiol ; 289: 115-126, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30223195

RESUMO

Salmonella enterica serovar Enteritidis (S. Enteritidis) is a food-borne bacterial pathogen that can cause human salmonellosis predominately by contamination of eggs and egg products. However, its survival mechanisms in egg white are not fully understood, especially from a proteomic point of view. In this study, the proteomic profiles of S. Enteritidis in Luria-Bertani (LB) broth containing 50% and 80% egg white, and in whole egg white were compared with the profile in LB broth using iTRAQ technology to identify key proteins that were involved in S. Enteritidis survival in egg white. It was found that there were 303, 284 and 273 differentially expressed proteins in S. Enteritidis after 6 h exposure to whole, 80% and 50% egg white, respectively. Most of up-regulated proteins were primarily associated with iron acquisition, cofactor and amino acid biosynthesis, transporter, regulation and stress responses, whereas down-regulated proteins were mainly involved in energy metabolism, virulence as well as motility and chemotaxis. Three stress response-related proteins (YbgC, TolQ, TolA) of the tol-pal system responsible for maintaining cell membrane stability of Gram-negative bacteria were up-regulated in S. Enteritidis in response to whole egg white. Interestingly, deletion of ybgC resulted in a decreased resistance of S. Enteritidis to egg white. Compared with the wild type and complementary strains, a 3-log population reduction was observed in △ybgC mutant strain after incubation in whole egg white for 24 h. Cellular morphology of △ybgC mutant strain was altered from rods to spheres along with cell lysis in whole egg white. Furthermore, deletion of ybgC decreased the expression of tol-pal system-related genes (tolR, tolA). Collectively, these proteomic and mutagenic analysis reveal that YbgC is essential for S. Enteritidis survival in egg white.


Assuntos
Clara de Ovo/microbiologia , Genes Bacterianos/fisiologia , Proteoma , Salmonella enteritidis/fisiologia , Animais , Galinhas/microbiologia , Ovos/microbiologia , Genes Bacterianos/genética , Viabilidade Microbiana/genética , Proteômica , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética
19.
Food Microbiol ; 72: 193-198, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29407397

RESUMO

Cross-protection to environmental stresses by ethanol adaptation in Salmonella poses a great threat to food safety because it can undermine food processing interventions. The ability of Salmonella enterica serovar Enteritidis (S. Enteritidis) to develop acid resistance following ethanol adaptation (5% ethanol for 1 h) was evaluated in this study. Ethanol-adapted S. Enteritidis mounted cross-tolerance to malic acid (a two-fold increase in minimum bactericidal concentration), but not to acetic, ascorbic, lactic, citric and hydrochloric acids. The population of S. Enteritidis in orange juice (pH 3.77) over a 48-h period was not significantly (p > 0.05) influenced by ethanol adaptation. However, an increased survival by 0.09-1.02 log CFU/ml was noted with ethanol-adapted cells of S. Enteritidis compared to non-adapted cells in apple juice (pH 3.57) stored at 25 °C (p < 0.05), but not at 4 °C. RT-qPCR revealed upregulation of two acid tolerance-related genes, rpoS (encoding σS) and SEN1564A (encoding an acid shock protein), following ethanol adaptation. The relative expression level of the acid resistance gene hdeB did not change. The resistance phenotypes and transcriptional profiles of S. Enteritidis suggest some involvement of rpoS and SEN1564A in the ethanol-induced acid tolerance mechanism.


Assuntos
Ácidos/metabolismo , Proteínas de Bactérias/genética , Etanol/metabolismo , Sucos de Frutas e Vegetais/microbiologia , Salmonella enteritidis/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Citrus sinensis/química , Sucos de Frutas e Vegetais/análise , Concentração de Íons de Hidrogênio , Malus/química , Viabilidade Microbiana , Salmonella enteritidis/genética , Salmonella enteritidis/crescimento & desenvolvimento
20.
Foodborne Pathog Dis ; 12(5): 433-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25826691

RESUMO

Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is a major pathogen responsible for causing the largest number of sporadic cases and outbreaks of human salmonellosis worldwide. In this study, an outbreak of Salmonella Enteritidis involving 112 cases in Ningbo, China was investigated with a combination of genotypic subtyping methods and phenotypic analysis. The pulsed-field gel electrophoresis and multilocus variable-number tandem-repeat analysis profiles showed that most of the outbreak clinical isolates (22/23) were indistinguishable from each other and were identical to the isolates obtained from implicated mousse cakes, demonstrating that this outbreak of gastroenteritis was caused by Salmonella Enteritidis-contaminated mousse cakes. Moreover, all isolates, irrespective of source, had an identical antibiotic susceptibility pattern. Five virulence-associated genes in Salmonella pathogenicity islands and the plasmid-associated virulence genes spvB/C were present in both the food and clinical isolates. Importantly, all of these isolates can survive well under low-temperature treatment, indicating that manufacturers of foodstuffs with raw ingredients (not subjected to thermal processing) should use an effective approach to prevent or eliminate the microbial hazards to public health.


Assuntos
Surtos de Doenças , Contaminação de Alimentos/análise , Gastroenterite/epidemiologia , Intoxicação Alimentar por Salmonella/epidemiologia , Salmonella enteritidis/genética , China/epidemiologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado , Microbiologia de Alimentos , Gastroenterite/microbiologia , Marcadores Genéticos , Genótipo , Repetições Minissatélites , Fenótipo , Replicon , Salmonella enteritidis/isolamento & purificação , Estresse Fisiológico , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...