Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 284: 116867, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154501

RESUMO

The loss of nitrogen in soil damages the environment. Clarifying the mechanism of ammonium nitrogen (NH4+-N) transport in soil and increasing the fixation of NH4+-N after N application are effective methods for improving N use efficiency. However, the main factors are not easily identified because of the complicated transport and retardation factors in different soils. This study employed machine learning (ML) to identify the main influencing factors that contribute to the retardation factor (Rf) of NH4+-N in soil. First, NH4+-N transport in the soil was investigated using column experiments and a transport model. The Rf (1.29 - 17.42) was calculated and used as a proxy for the efficacy of NH4+-N transport. Second, the physicochemical parameters of the soil were determined and screened using lasso and ridge regressions as inputs for the ML model. Third, six machine learning models were evaluated: Adaptive Boosting, Extreme Gradient Boosting (XGB), Random Forest, Gradient Boosting Regression, Multilayer Perceptron, and Support Vector Regression. The optimal ML model of the XGB model with a low mean absolute error (0.81), mean squared error (0.50), and high test r2 (0.97) was obtained by random sampling and five-fold cross-validation. Finally, SHapely Additive exPlanations, entropy-based feature importance, and permutation characteristic importance were used for global interpretation. The cation exchange capacity (CEC), total organic carbon (TOC), and Kaolin had the greatest effects on NH4+-N transport in the soil. The accumulated local effect offered a fundamental insight: When CEC > 6 cmol+ kg-1, and TOC > 40 g kg-1, the maximum resistance to NH4+-N transport within the soil was observed. This study provides a novel approach for predicting the impact of the soil environment on NH4+-N transport and guiding the establishment of an early-warning system of nutrient loss.

2.
Front Nutr ; 11: 1428577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139650

RESUMO

Introduction: This study aimed to investigate the regulatory effects of mulberry leaf flavonoids and carnosic acid complex (MCC) on the growth performance, intestinal morphology, antioxidant, and p38 MAPK/Nrf2 pathway in broilers. Methods: A total of 256 healthy 8-day-old female yellow-feathered broilers were randomly divided into 4 equal groups: a control group (CON) fed a basal diet, an antibiotic group (CTC) supplemented with 50 mg/kg chlortetracycline, and two experimental groups (MCC75, MCC150) fed basal diets with 75 mg/kg and 150 mg/kg of MCC, respectively. The experiment lasted for 56 days, with days 1-28 designated as the initial phase and days 29-56 as the growth phase. Results: The results on the growth performance showed that diets supplemented with MCC and CTC decreased the feed-to-gain ratio (F/G), diarrhea rate, and death rate, while significantly increasing the average daily weight gain (ADG) (p < 0.05). Specifically, the MCC150 group enhanced intestinal health, indicated by reduced crypt depth and increased villus height-to-crypt depth ratio (V/C) as well as amylase activity in the jejunum. Both the MCC and CTC groups exhibited increased villus height and V/C ratio in the ileal (p < 0.05). Additionally, all treated groups showed elevated serum total antioxidant capacity (T-AOC), and significant increases in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were observed in both the MCC150 and CTC groups. Molecular analysis revealed an upregulation of the jejunal mRNA expression levels of PGC-1α, Nrf2, and Keap1 in the MCC and CTC groups, as well as an upregulation of ileum mRNA expression levels of P38, PGC-1α, Nrf2, and Keap1 in the MCC150 group, suggesting activation of the p38-MAPK/Nrf2 pathway. Discussion: These findings indicate that dietary supplementation with MCC, particularly at a dosage of 150 mg/kg, may serve as a viable antibiotic alternative, enhancing growth performance, intestinal health, and antioxidant capacity in broilers by regulating the p38-MAPK/Nrf2 pathway.

3.
Ecotoxicology ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995498

RESUMO

Mercury (Hg) is a persistent soil pollutant, and its toxicity can be evaluated using soil enzyme indicators. However, a thorough understanding of how the enzyme resists and remains resilient to Hg stress is essential, as it significantly impacts the accuracy of toxicity assessments. Therefore, it is worthwhile to understand the functional stability of urease in soil under Hg pollution. This study compares the effects of Hg at different concentrations and exposure times on soil urease. Results indicate that soil urease activity was enhanced in the first two hours under low levels of Hg pollution, decreased after six hours of acute Hg pollution, and reached its maximum reduction in 24 hours. The urease in fluvo-aquic soil, with higher soil organic matter showed higher resistance to Hg acute pollution than that in red soil. Over a longer aging process, soil urease activity gradually recovered with time. Hormesis effects were observed in red soil under high Hg stress after 30 days, showing the strong resilience of urease enzyme function to Hg pollution. The ecological dose, ED10, (the Hg concentration causing a 10% reduction in soil urease activity) ranged from 0.09 to 0.59 mg kg-1 under short-term exposure, and was lower than that under a longer aging process (0.28 to 2.71 mg kg-1). Further, aging reduced the Hg ecotoxicity due to decreased Hg availability and the resilience of soil urease activity. This indicates that the risk of Hg pollution estimated by soil urease as an indicator depends on exposure time and enzyme stability. These factors need consideration in heavy metal pollution assessments using soil enzymes.

4.
Org Lett ; 26(29): 6279-6283, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39023295

RESUMO

2(3H)-Furanones are tremendously important not only because of their wide occurrence in bioactive compounds but also due to their versatility in organic synthesis. Here, a straightforward approach to 2(3H)-furanones from readily available tertiary propargylic alcohols with arylboronic acids in the presence of CO using rhodium as a catalyst has been established. The method exhibits a broad substrate scope tolerating useful functional groups with a moderate to high stereoselectivity.

5.
J Environ Sci (China) ; 144: 137-147, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802225

RESUMO

The pollution and ecological risks posed by arsenic (As) entering the soil are the major environmental challenges faced by human beings. Soil phosphatase can serve as a useful indicator for assessing As contamination under specific soil pH conditions. However, the study of phosphatase kinetics in long-term field As-contaminated soil remains unclear, presenting a significant obstacle to the monitoring and evaluation of As pollution and toxicity. The purpose of this study was to determine phosphatase activity and explore enzyme kinetics in soils subjected to long-term field As contamination. Results revealed that the soil phosphatase activity varied among the tested soil samples, depending on the concentrations of As. The relationship between total As, As fractions and phosphatase activity was found to be significant through negative exponential function fitting. Kinetic parameters, including maximum reaction velocity (Vmax), Michaelis constant (Km) and catalytic efficiency (Vmax/Km), ranged from 3.14 × 10-2-53.88 × 10-2 mmol/(L·hr), 0.61-7.92 mmol/L, and 0.46 × 10-2-11.20 × 10-2 hr-1, respectively. Vmax and Vmax/Km of phosphatase decreased with increasing As pollution, while Km was less affected. Interestingly, Vmax/Km showed a significant negative correlation with all As fractions and total As. The ecological doses (ED10) for the complete inhibition and partial inhibition models ranged from 0.22-70.33 mg/kg and 0.001-55.27 mg/kg, respectively, indicating that Vmax/Km can be used as an index for assessing As pollution in field-contaminated soil. This study demonstrated that the phosphatase kinetics parameters in the soil's pH system were better indicators than the optimal pH for evaluating the field ecotoxicity of As.


Assuntos
Arsênio , Monitoramento Ambiental , Poluentes do Solo , Solo , Poluentes do Solo/análise , Arsênio/análise , Solo/química , Concentração de Íons de Hidrogênio , Monitoramento Ambiental/métodos , Cinética , Monoéster Fosfórico Hidrolases/metabolismo
6.
J Hazard Mater ; 470: 134232, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593666

RESUMO

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Assuntos
Arsênio , Carbono , Microbiologia do Solo , Poluentes do Solo , Arsênio/metabolismo , Arsênio/toxicidade , Carbono/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Fósforo/metabolismo , Solo/química
7.
Sci Total Environ ; 926: 171953, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537825

RESUMO

The soil-air partition coefficient (KSA) values are commonly utilized to examine the fate of organic contaminants in soils; however, their measurement has been lacking for semi-volatile petroleum hydrocarbons within soil contaminated by crude oil. This research utilized a solid-phase fugacity meter to determine the KSA values of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) under crucial environmental conditions. The results showed a notable increase in KSA values with the extent of crude oil contamination in soil. Specifically, in the 3 % crude oil treatment, the KSA values for n-alkanes and PAHs increased by 1.16 and 0.66 times, respectively, compared to the 1 % crude oil treatment. However, the KSA values decreased with changes in temperature, water content, and particle size within the specified experimental range. Among these factors, temperature played a significant role. The KSA values for n-alkanes and PAHs decreased by 0.27-0.89 and 0.61-0.83 times, respectively, with a temperature increase from 5 °C to 35 °C. Moreover, the research identified that the molecular weight of n-alkanes and PAHs contributed to variations in KSA values under identical environmental factors. With an increase in temperature from 5 °C to 35 °C, the range of n-alkanes present in the air phase expanded from C11 to C34, and PAHs showed elevated levels of acenaphthene (ACE) and benzo (b) fluoranthene (BbFA). Furthermore, heightened water content and particle size were observed to facilitate the volatilization of low molecular weight petroleum hydrocarbons. The effect of environmental variables on soil-air partitioning was evaluated using the Box-Behnken design (BBD) model, resulting in the attainment of the lowest log KSA values. These results illustrate that soil-air partitioning is a complex process influenced by various factors. In conclusion, this study improves our comprehension and predictive capabilities concerning the behavior and fate of n-alkanes and PAHs within soil-air systems.

8.
Environ Pollut ; 343: 123286, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171425

RESUMO

The ecological functioning of black soil largely depends on the activities of various groups of microorganisms. However, little is known about how atrazine, a widely used herbicide with known harmful effects on the environment, influences the microbial ecology of black soil, and the extracellular enzymes related to the carbon, nitrogen and phosphorus cycles. Here, we evaluated the change in extracellular enzymes and bacterial community characteristics in black soil after exposure to various concentrations of atrazine. Low concentrations of applied atrazine (10 - 20 mg kg-1) were almost completely degraded after 120 days. At high concentrations (80 - 100 mg kg-1), about 95% of the applied atrazine was degraded over the same period. Additionally, linear fitting of data indicated that the total enzymatic activity index (TEI) and bacterial α-diversity index were negatively correlated with atrazine applied concentration. The atrazine had a greater effect on bacterial beta diversity after 120 days, which differentiated species clusters treated with low and high atrazine concentrations. Soil bacterial community structure and function were affected by atrazine, especially at high atrazine concentrations (80 - 100 mg kg-1). Key microorganisms such as Sphingomonas and Nocardioides were identified as biomarkers for atrazine dissipation. Functional prediction indicated that most metabolic pathways might be involved in atrazine dissipation. Overall, the findings enhance our understanding of the factors driving atrazine degradation in black soil and supports the use of biomarkers as indicators of atrazine dissipation.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Atrazina/análise , Solo , Microbiologia do Solo , Herbicidas/análise , Bactérias/metabolismo , Poluentes do Solo/análise , Biomarcadores/metabolismo , Biodegradação Ambiental
9.
Sci Total Environ ; 912: 168972, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043822

RESUMO

The response of the microbes to total petroleum hydrocarbons (TPHs) in three types of oilfield soils was researched using metagenomic analysis. The ranges of TPH concentrations in the grassland, abandoned well, working well soils were 1.16 × 102-3.50 × 102 mg/kg, 1.14 × 103-1.62 × 104 mg/kg, and 5.57 × 103-3.33 × 104 mg/kg, respectively. The highest concentration of n-alkanes and 16 PAHs were found in the working well soil of Shengli (SL) oilfield compared with those in Nanyang (NY) and Yanchang (YC) oilfields. The abandoned well soils showed a greater extent of petroleum biodegradation than the grassland and working well soils. Α-diversity indexes based on metagenomic taxonomy showed higher microbial diversity in grassland soils, whereas petroleum-degrading microbes Actinobacteria and Proteobacteria were more abundant in working and abandoned well soils. RDA demonstrated that low moisture content (MOI) in YC oilfield inhibited the accumulation of the petroleum-degrading microbes. Synergistic networks of functional genes and Spearman's correlation analysis showed that heavy petroleum contamination (over 2.10 × 104 mg/kg) negatively correlated with the abundance of the nitrogen fixation genes nifHK, however, in grassland soils, low petroleum content facilitated the accumulation of nitrogen fixation genes. A positive correlation was observed between the abundance of petroleum-degrading genes and denitrification genes (bphAa vs. nirD, todC vs. nirS, and nahB vs. nosZ), whereas a negative correlation was observed between alkB (alkane- degrading genes) and amo (ammonia oxidation), hao (nitrification). The ecotoxicity of petroleum contamination, coupled with petroleum hydrocarbons (PH) degradation competing with nitrifiers for ammonia inhibited ammonia oxidation and nitrification, whereas PH metabolism promoted the denitrification process. Moreover, positive correlations were observed between the abundance of amo gene and MOI, as well as between the abundance of the dissimilatory nitrate reduction gene nirA and clay content. Thus, improving the soil physicochemical properties is a promising approach for decreasing nitrogen loss and alleviating petroleum contamination in oilfield soils.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/análise , Campos de Petróleo e Gás , Solo/química , Amônia/análise , Biodegradação Ambiental , Hidrocarbonetos/análise , Alcanos , Microbiologia do Solo , Poluentes do Solo/análise
10.
J Hazard Mater ; 460: 132259, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633018

RESUMO

Photodegradation process plays an important role in the natural attenuation of petroleum hydrocarbons (PHs) in oil contaminated soil. The photodegradation characteristics of PHs (C10-C40) in topsoil of crude oil contaminated soil irradiated by simulated sunlight in 280 d without microbial action were investigated. The results showed that photodegradation rate of PHs was increased with increasing the light intensity and decreased with increasing the initial concentration of PHs. Moreover, the photodegradation capacity of tested PHs was relevant to the length of carbon chain. The photodegradation rates of C10-C20 were higher than that of C21-C40 in photoperiod. C21-C40 showed an obvious trend of photodegradation after 56 d, although their photodegradation rates were less than 20% at the early stage. And, the redundancy analysis indicated that lighting time was the primary factor for photodegradation of PHs under abiotic conditions. The photodegradation rate was well interpreted by a two-stage, first-order kinetic law with a faster initial photolysis rate. The EPR spectrums showed that simulated solar irradiation accelerated the generation of superoxide radicals, which could react with PHs in soil. Also, the function groups in PHs polluted soil were changed after light exposure, which might imply the possible photodegradation pathway of PHs.

11.
Chemosphere ; 334: 139045, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244552

RESUMO

Long-term input of agricultural chemicals such as pesticides into the soil can increase soil pollution, thereby affecting the productivity and quality of black soil. Triazine herbicide atrazine has been shown to have long-lasting residual effects in black soil. The atrazine residues affected soil biochemical properties, further leading to microbial metabolism restriction. It is necessary to explore the strategies to mitigate the limitations on microbial metabolism in atrazine-contaminated soils. Here, we evaluated the effect of the atrazine on microbial nutrient acquisition strategies as indicated by extracellular enzyme stoichiometry (EES) in four black soils. Atrazine degradation in soil followed the first-order kinetics model across various concentrations ranging from 10 to 100 mg kg-1. We found that the atrazine was negatively correlated with the EES for C-, N-, and P-acquisition. Vector lengths and angles decreased and increased significantly with an increase of atrazine concentration in tested black soils except for Lishu soils. Moreover, the vector angles were >45° for tested four black soils, indicating that atrazine residue had the greatest P-limitation on soil microorganisms. Interestingly, microbial C- and P-limitations with different atrazine concentrations showed a strong linear relationship, especially in Qiqihar and Nongan soils. Atrazine treatment significantly negatively affected microbial metabolic limitation. Soil properties and EES interaction explained up to 88.2% for microbial C-/P-limitation. In conclusion, this study confirms the EES as a useful method in evaluating the effects of pesticides on microbial metabolic limitations.


Assuntos
Atrazina , Herbicidas , Praguicidas , Poluentes do Solo , Atrazina/química , Solo/química , Poluentes do Solo/análise , Herbicidas/química , Praguicidas/análise , Biodegradação Ambiental , Microbiologia do Solo
12.
Sci Total Environ ; 882: 163364, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031929

RESUMO

Lead (Pb) is a major environmental pollutant that threatens the soil environment and human health. Monitoring and assessing Pb toxicity on soil health are of paramount importance to the public. To use soil enzymes as biological indicators of Pb contamination, herein, the responses of soil ß-glucosidase (BG) in different pools of soil (total, intracellular and extracellular enzyme) to Pb contamination were investigated. The results indicated that the intra-BG (intracellular BG) and extra-BG (extracellular BG) responded differently to Pb contamination. While the addition of Pb caused a significant inhibition of the intra-BG activities, the extra-BG activities were only slightly inhibited. Pb showed a non-competitive inhibition to extra-BG, while both non-competitive and uncompetitive inhibition were observed for intra-BG in the tested soils. The dose-response modeling was used to calculate ecological dose ED10, which represents the concentration of Pb pollutant that causes a 10 % reduction in Vmax, to express the ecological consequences of Pb contamination. A positive correlation was found between ecological dose ED10 values of intra-BG and soil total nitrogen (p < 0.05), which suggests soil properties may influence Pb toxicity to soil BG. Based on the differences in ED10 and inhibition rate among different enzyme pools, this study suggests that the intra-BG is more sensitive for Pb contamination assessment. From this, we propose that intra-BG should be considered when evaluating Pb contamination using soil enzymes as indicators.


Assuntos
Chumbo , Poluentes do Solo , Humanos , Chumbo/toxicidade , Solo , beta-Glucosidase , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Poluição Ambiental , Monitoramento Ambiental
13.
Sci Total Environ ; 874: 162521, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36868272

RESUMO

Fluorescein diacetate hydrolase (FDA hydrolase) is a reliable biochemical biomarker of changes in soil microbial activity and quality. However, the effect and mechanism of lower-ring polycyclic aromatic hydrocarbons (PAHs) on soil FDA hydrolase are still unclear. In this work, we investigated the effects of two typical lower-ring PAHs, naphthalene (Nap) and anthracene (Ant), on the activity and kinetic characteristics of FDA hydrolases in six soils differing in their properties. Results demonstrated that the two PAHs severely inhibited the activities of the FDA hydrolase. The values of Vmax and Km dropped by 28.72-81.24 % and 35.84-74.47 % at the highest dose of Nap, respectively, indicating an uncompetitive inhibitory mechanism. Under Ant stress, the values of Vmax decreased by 38.25-84.99 %, and the Km exhibited two forms, unchanged and decreased (74.00-91.61 %), indicating uncompetitive and noncompetitive inhibition. The inhibition constant (Ki) of the Nap and Ant ranged from 0.192 to 1.051 and 0.018 to 0.087 mM, respectively. The lower Ki of Ant compared to Nap indicated a higher affinity for enzyme-substrate complex, resulting in higher toxicity of Ant than Nap to soil FDA hydrolase. The inhibitory effect of Nap and Ant on soil FDA hydrolase was mainly affected by soil organic matter (SOM). SOM influenced the affinity of PAHs with enzyme-substrate complex, which resulted in a difference in PAHs toxicity to soil FDA hydrolase. The enzyme kinetic Vmax was a more sensitive indicator than enzyme activity to evaluate the ecological risk of PAHs. This research offers a strong theoretical foundation for quality control and risk evaluation of PAH-contaminated soils through a soil enzyme-based approach.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrolases , Solo/química , Cinética , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
14.
RSC Adv ; 13(7): 4211-4221, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36760272

RESUMO

Adding organic acid is an effective approach to assist phytoremediation. The effects of organic acids on phytoremediation efficiency are unknown in Rhus chinensis. This study aimed to evaluate the effect of citric acid (CA) and oxalic acid (OA) on the lead phytoremediation potential of R. chinensis with significantly inhibited growth in Pb-contaminated soil. The experimental pot culture study evaluated the long-term physiological response and metal accumulation patterns of R. chinensis grown in varying Pb-treated soil, and examined the effects of 0.5 and 1.0 mmol L-1 CA and OA on the growth, oxidative stress, antioxidant system, and Pb subcellular distribution of R. chinensis grown in pots with 1000 mg kg-1 Pb. Compared with the control, the biomass, leaf area, root morphological parameters, and chlorophyll concentration of R. chinensis decreased, whereas the carotenoid, malondialdehyde, H2O2, and O2˙- concentrations, and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity increased under Pb stress. A copious amount of Pb was taken up and mainly stored in the cell walls of the roots. The application of CA and OA increased plant growth. The highest shoots and roots biomass increase recorded was 44.4 and 61.2% in 1.0 mmol L-1 OA and 0.5 mmol L-1 CA treatment, respectively. The presence of CA and OA increased SOD, POD, and CAT activities and decreased the H2O2, O2˙- and malondialdehyde content. A concentration of 0.5 mmol L-1 CA significantly increased the Pb concentration in the organs. The other organic acid treatments changed root Pb concentrations slightly while increasing shoot Pb concentrations. The translocation factor values from organic acid treatments were increased by 38.8-134.1%. Our results confirmed that organic acid could alleviate the toxicity of stunted R. chinensis and improve phytoremediation efficiency.

15.
Chem Commun (Camb) ; 59(21): 3138-3141, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36810784

RESUMO

A general electrocatalyst design for water splitting through generating oxygen vacancies in bimetallic layered double hydroxides by using carbon nitride is proposed. The excellent OER activity of the achieved bimetallic layered double hydroxides is attributed to oxygen vacancies, which reduce the energy barrier of the rate-determining step.

16.
Environ Res ; 220: 115181, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586710

RESUMO

Arsenic-related functional genes are ubiquitous in microbes, and their distribution and abundance are influenced by edaphic factors. In arsenic-contaminated soils, soil arsenic content and pH determine the distribution of arsenic metabolizing microorganisms. In the uncontaminated natural ecosystems, however, it remains understudied for the key variable factor in determining the variation of bacterial assembly and mediating the arsenic biogeographical cycles. Here, we selected natural forest soils from southern and northern slopes along the altitudinal gradient of Taibai Mountain, China. The arsenic-related functional genes and soil bacterial community was examined using GeoChip 5.0 and high-throughput sequencing of 16S rRNA genes, respectively. It was found that arsenic-related functional genes were ubiquitous in tested forest soils. The gene arsB has the highest relative abundance, followed by arsC, aoxB, arrA, arsM, and arxA. The arsenic-related functional genes distribution on two slopes were decoupled from their corresponding bacterial community. Though there are higher abundance of bacterial communities on the northern slope than that on the southern slope, for arsenic-related functional genes, the abundance has the contrary trend which showing the more arsenic-related functional genes on the southern slope. In the top ten phyla, Proteobacteria and Actinobacteria were dominant phyla which affected the abundance of arsenic-related functional genes. Redundancy analysis and variance partitioning analysis indicated that soil pH, organic matter and altitude jointly determined the arsenic-related functional genes diversity in the two slopes of Taibai Mountain, and soil pH was a key factor. This indicates that the lower pH may shape more microbes with arsenic metabolic capacity. These findings suggested that soil pH plays a significant role in regulating the distribution of arsenic-related functional microorganisms, even for a forest ecosystem with an altitudinal gradient, and remind us the importance of pH in microbe mediated arsenic transformation.


Assuntos
Arsênio , Ecossistema , Arsênio/metabolismo , Solo/química , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Florestas , Concentração de Íons de Hidrogênio , Microbiologia do Solo
17.
Sci Total Environ ; 859(Pt 1): 160184, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395829

RESUMO

Soil phosphatase is considered an indicator to assess soil arsenic (As) pollution. In the phosphatase activity determination, a fixed buffer value (pH 5-10) is commonly used for all soils, ignoring the soil's actual pH. Here, we determined the soil phosphatase activity of 20 soils under As stress at the soils' pH, and the As inhibition mechanism was also explored by the enzyme kinetics. Our results show that soil phosphatase activity was significantly inhibited under As stress. The inhibition rate in acid soils (39.2 %) was considerably higher than in alkaline soils (25.4 %) when As concentration was 600 mg kg-1. For alkaline soils, As inhibited phosphatase by competitive inhibition or linear mixed inhibition, while for acid soils, it was more complex, including linear mixed inhibition, non-competitive inhibition, and anti-competitive inhibition. Simultaneously, our results showed that the ecological dose (ED10) described by the partial inhibition model was far below than the complete inhibition model. According to the partial inhibition model, the ED10 of As ranged from 2.66 to 164.07 mg kg-1 for alkaline soils and 0.11 to 89.95 mg kg-1 for acid soils. Moreover, Vmax/Km of phosphatase is a more sensitive index for evaluating As contamination than Vmax in partial inhibition models. The ED10 obtained based on the relationship between Vmax/Km and As concentration was 0.64-34.75 mg kg-1 for acid soils and 8.48 to 20.16 mg kg-1 for alkaline soils. This also confirms Vmax/Km as a sensitive and ideal index for assessing As pollution under soils' actual pH. Furthermore, soil pH and cation exchange capacity are dominant factors affecting As inhibition on soil phosphatase. The above kinetic studies indicate that performing the assay by adjusting the buffer pH to the soil pH is essential for more accurately evaluating arsenic toxicity.


Assuntos
Arsênio , Poluentes do Solo , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Cinética , Monoéster Fosfórico Hidrolases , Arsênio/toxicidade , Arsênio/análise , Concentração de Íons de Hidrogênio
18.
Sci Total Environ ; 855: 158926, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152848

RESUMO

The intense drying-rewetting cycle due to climate change can affect soil microbial community composition and function, resulting in long-term consequences for belowground carbon and nutrient dynamics. However, how climatic and edaphic factors influence the responses of enzymes to rewetting and their responses to additional perturbation (e.g., heavy metal pollution) after the drying-rewetting history are not well understood. In this study, we collected 18 surface soils from farmlands across various climate zones in China. We chose dehydrogenase (DHA) and alkaline phosphomonoesterase (ALP) as representative intracellular and extracellular enzymes, respectively, and investigated their tolerance to additional perturbation by adding metal ions (i.e., Cd2+) upon rewetting. In all soils, rewetting increased DHA activities but did not affect ALP activities compared to air-dried soils. Rewetting increased the tolerances of DHA and ALP to Cd stress, suggesting that the drying-rewetting history may reduce the susceptibility of soil enzymes to additional disturbance. The results demonstrate that differentiating enzymes based on their location in the soil will improve our ability to assess the stress response of microbial communities to drastic fluctuations in soil moisture, thereby better predicting the legacy of climate change on microbial function in soils contaminated with heavy metals.


Assuntos
Poluentes do Solo , Solo , Microbiologia do Solo , Cádmio/toxicidade , Dessecação , Mudança Climática , Poluentes do Solo/toxicidade
19.
Environ Sci Pollut Res Int ; 30(7): 17644-17656, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36197608

RESUMO

Antimony (Sb), a toxic metalloid, is ubiquitous in the environment and threatens human and ecological health. Soil arylsulfatase (ARS) activity indicates heavy metal pollution. However, the enzyme's substrate concentration can affect the toxicity evaluation of heavy metals using enzyme activity. Enzyme kinetic parameters directly reflect the potency of heavy metals, and the magnitude of these parameters does not change with the substrate concentration of soil enzyme. In this work, seventeen soils were exposed to Sb contamination to investigate the change of kinetic parameters of soil arylsulfatase under Sb stress. Results showed that Sb inhibited soil arylsulfatase activity. The maximum reaction rate (Vmax) of soil arylsulfatase was reduced by 11.58-46.72% in 16 tested soils and unchanged in S15 when exposed to Sb. The Michaelis constant (Km) presented three trends: unchanged, increased by 28.46-41.27%, and decreased by 19.71-29.91% under Sb stress. The catalytic efficiency (Ka as the ratio of Vmax to Km) decreased by 12.56-55.17% in all soils except for S12 and S16. Antimony acted as a non-competitive and linear mixed inhibitor by decreasing ARS activity in S1-S12, S14, and S17-S18 soils, as an uncompetitive inhibitor in S13 and S16 soils and as a competitive inhibitor in S15. The competitive and uncompetitive inhibition constants (Kic and Kiu) were 0.058-0.142 mM and 0.075-0.503 mM. The ecological dose values of Sb to catalytic efficiency (Ka) of ARS (ED10-Ka) ranged from 50 to 1315 mg kg-1. Soil pH and total phosphorus (TP) contents were the dominant factors responsible for Sb toxicity on Ka by affecting the interaction of inhibitor (Sb) with enzyme-substrate (ES) complex. The findings of this study advance the current knowledge on Sb toxicity to soil enzymes and have significant implications for the risk assessment of Sb in soils.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Antimônio/análise , Solo/química , Arilsulfatases , Poluição Ambiental , Poluentes do Solo/análise
20.
Chemosphere ; 311(Pt 2): 137116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334756

RESUMO

The application of parathion (PTH) in agriculture can result in its entry into the soil and threaten the soil environment. Monitoring the PTH residues and assessing toxicity on soil health are of paramount importance to the public. Herein, the dissipation of PTH and concomitant influence on microbial activities [FDA hydrolase (FDA‒H), microbial biomass carbon (MBC) and basal respiration (BR)] in coastal solonchaks were investigated. Results showed that the dissipation of PTH in tested soil declined linearly, and the half-lives varied from 5.6 to 56.8 days, depending on pollutant concentrations. The FDA‒H activity and MBC were negatively affected by PTH pollution and exhibited a significantly positive correlation. Two‒way ANOVA analysis demonstrated that microbial activities were affected not only by PTH dose and incubation time but also by their interactions. The integrated biomarker response (IBR/n) index values on day 120 were between 1.02 and 2.89, larger than those on day 1 during PTH dissipation. This implied that the soil quality did not recover though there was no PTH residue in the soil at the end of the experiment. These findings suggested that microbial activities integrated with IBR/n index could elucidate the hazardous impacts of PTH dissipation on biochemical cycling and microorganisms in soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA