Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1357141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481400

RESUMO

The migratory endoparasitic phytonematodes Bursaphelenchus xylophilus is the causal agent of pine wilt disease and causes significant economic damage to pine forests in China. Effectors play a key role in the successful parasitism of plants by phytonematodes. In this study, 210 genes obtained by transcriptomics analyses were found to be upregulated in B. xylophilus infecting Pinus massoniana that were not functionally annotated nor reported previously in B. xylophilus infecting P. thunbergii. Among these differentially expressed genes, a novel effector, BxICD1, that could induce cell death in the extracellular space of Nicotiana benthamiana was identified. BxICD1 was upregulated in the early stages of infection, as shown by RT-qPCR analyses. In situ hybridization analysis showed that BxICD1 was expressed in the esophageal gland of nematodes. The yeast signal sequence trap system indicated that BxICD1 possessed an N-terminal signal peptide with secretion functionality. Using an Agrobacterium-mediated transient expression system, it was demonstrated that the cell death-inducing activity of BxICD1 was dependent on N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1). Finally, BxICD1 contributed to B. xylophilus virulence and migration in host pine trees, as demonstrated by RNAi silencing assays. These findings indicate that BxICD1 both induces plant cell death and also contributes to nematode virulence and migration in P. massonian.

2.
Light Sci Appl ; 13(1): 48, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355692

RESUMO

Endowing flexible and adaptable fiber devices with light-emitting capabilities has the potential to revolutionize the current design philosophy of intelligent, wearable interactive devices. However, significant challenges remain in developing fiber devices when it comes to achieving uniform and customizable light effects while utilizing lightweight hardware. Here, we introduce a mass-produced, wearable, and interactive photochromic fiber that provides uniform multicolored light control. We designed independent waveguides inside the fiber to maintain total internal reflection of light as it traverses the fiber. The impact of excessive light leakage on the overall illuminance can be reduced by utilizing the saturable absorption effect of fluorescent materials to ensure light emission uniformity along the transmission direction. In addition, we coupled various fluorescent composite materials inside the fiber to achieve artificially controllable spectral radiation of multiple color systems in a single fiber. We prepared fibers on mass-produced kilometer-long using the thermal drawing method. The fibers can be directly integrated into daily wearable devices or clothing in various patterns and combined with other signal input components to control and display patterns as needed. This work provides a new perspective and inspiration to the existing field of fiber display interaction, paving the way for future human-machine integration.

3.
Opt Express ; 31(2): 929-947, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785141

RESUMO

Free-space optical (FSO) communication has attracted extensive attention in recent years. To maintain a reliable FSO link, two main issues need to be addressed: beam drift and vibration. In this paper, we demonstrate a non-mechanical self-alignment system based on a cascaded liquid crystal optical antenna, in which a frequency decoupled hybrid integration Kalman filter (FDHI-KF) method is proposed to achieve predictive beam drift tracking and vibration mitigation. By leveraging the integrated control on our lab-made liquid crystal phase modulation devices, and implementing the adaptive algorithm on a heterogeneous field programmable gate array (FPGA), this system is capable of realizing precise self-alignment without any moving parts. Experiments are conducted to verify its performance in practical applications. We envision it to set a benchmark for future liquid crystal non-mechanical beam-steering systems in FSO communications.

4.
J Agric Food Chem ; 70(23): 7170-7179, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35657321

RESUMO

Copper is an essential micronutrient for life, whose homeostasis is rigorously regulated to meet the demands of normal biological processes and to minimize the potential toxicity. Copper enriched by yeast is regarded as a safe and bioavailable form of copper supplements. Here, a Saccharomyces cerevisiae mutant strain H247 with expanded storage capability of copper was obtained through atmospheric and room-temperature plasma treatment. Transcriptomic analyses found that transcriptional upregulation of DGA1 might be the major contributor to the enhancement of intracellular copper accumulation in strain H247. The positive correlation between biogenesis of lipid droplets and intracellular accumulation of copper was confirmed by overexpression of the diacylglycerol acyltransferase encoding genes DGA1 and LRO1 or knockout of DGA1. Lipid droplets are not only the storage pool of copper but might prompt the copper trafficking to mitochondria, vacuoles, and Golgi apparatus. These results provide new insights into the sophisticated copper homeostatic mechanisms and the biological functions of lipid droplets.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cobre/farmacologia , Gotículas Lipídicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
5.
Front Microbiol ; 13: 837894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387079

RESUMO

Carotenoids are unsaturated compounds with terpene groups. Among them, astaxanthin has strong antioxidant properties. It is widely used in aquaculture, food, medicine, and cosmetics with a broad market prospect. Phaffia rhodozyma is an important microorganism that synthesizes astaxanthin, but its wild strains have low pigment content, long growth cycle, and low fermentation temperature. Therefore, it is important to research the genetic improvement of the physiological and biochemical properties of P. rhodozyma. In this study, the atmospheric and room temperature plasma mutagenesis technology was adopted, through the functional evolution of the carotenoid production performance; then, through the comparative analysis of the genomics and transcriptomics of the wild strain and evolved strain, the key factor GST1 gene that affects carotenoid synthesis was discovered.

6.
Appl Opt ; 61(6): 1583-1592, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201050

RESUMO

To implement a liquid crystal optical phased array (LC-OPA) on a practical free-space laser communication terminal, there are two essential parameters: insertion loss and the closed-loop bandwidth required to meet the dynamic linking condition of the acquisition-tracking-pointing sub-system. Real-time hardware platforms and deflection efficiency optimization algorithms have been suggested since the invention of LC-OPA. In this paper, the so-called ZYNQ platform, a field-programmable-gate-array-based heterogeneous system-on-chip (SoC), is utilized to keep real-time response and accelerate data generation, such as beam steering, beamforming, beam enhancement, etc. In addition, a novel, to the best of our knowledge, optimization algorithm is proposed on the concept of dimension reduction of the number of objective variables. After deploying on this heterogeneous SoC platform, numerical simulations and experimental results both verify that, compared to the conventional PC-based system, the integrated SoC platform offers 15.8 times faster iterative speed, a rapid convergence rate, and excellent robustness, yet with less usage of power, physical size, and monetary cost. The efficiency enhancement process costs only a few seconds at any angle, laying the foundation for practical in-line applications.

7.
Appl Biochem Biotechnol ; 194(5): 1857-1870, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34985638

RESUMO

Copper is an essential trace element for living organisms. Copper enriched by yeast of Saccharomyces cerevisiae is regarded as the biologically available organic copper supplement with great potentiality for application. However, the lower uptake ratio of copper ions makes the production of copper enriched by yeast uneconomically and environmentally unfriendly. In this study, S. cerevisiae Cu-5 with higher copper tolerance and intracellular copper accumulation was obtained by screening of our yeast strains collection. To increase the uptake ratio of copper ions, the medium composition and cultivation conditions for strain Cu-5 were optimized systematically. A medium comprised of glucose, yeast extract, (NH4)2SO4, and inorganic salts was determined, then a novel cultivation strategy including pH control at 5.5 and increasing amounts of yeast extract for a higher concentration of copper ion in the medium was developed. The uptake ratios of copper ions were more than 90% after combining 50 to 100 mg/L copper ions with 3.5 to 5.0 g/L yeast extract, which is the highest until now and is conducive to the cost-effective and environmentally friendly production of bioactive copper in yeast-enriched form.


Assuntos
Cobre , Saccharomyces cerevisiae , Transporte Biológico , Meios de Cultura , Íons
8.
J Agric Food Chem ; 69(42): 12474-12484, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34662105

RESUMO

Transcriptional downregulation is widely used for metabolic flux control. Here, marO, a cis-element of Escherichia coli mar operator, was explored to engineer promoters of Saccharomyces cerevisiae for downregulation. First, the ADH1 promoter (PADH1) and its enhanced variant PUADH1 were engineered by insertion of marO into different sites, which resulted in decrease in both gfp5 transcription and GFP fluorescence intensity to various degrees. Then, marO was applied to engineer the native ERG1 and ERG11 promoters due to their importance for accumulation of value-added intermediates squalene and lanosterol. Elevated squalene content (4.9-fold) or lanosterol content (4.8-fold) and 91 or 28% decrease in ergosterol content resulted from the marO-engineered promoter PERG1(M5) or PERG11(M3), respectively, indicating the validity of the marO-engineered promoters in metabolic flux control. Furthermore, squalene production of 3.53 g/L from cane molasses, a cheap and bulk substrate, suggested the cost-effective and promising potential for squalene production.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regulação para Baixo , Ergosterol , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esqualeno
9.
Virus Res ; 305: 198568, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555442

RESUMO

Human metapneumovirus (HmPV) is a common and serious virus that causes respiratory tract infection. This study aimed to develop a detection technique by combining reverse transcription recombinase polymerase amplification (RT-RPA) with CRISPR-Cas12a (RT-RPA-Cas12a) for clinical diagnosis of HmPV. Herein, four primer pairs targeting partial nucleoprotein (N) gene of HmPV were designed and evaluated. Then, the products amplified by RT-RPA were detected using CRISPR-Cas12a combined with fluorescence or lateral flow (LF). RT-RPA-Cas12a-based fluorescence or LF assay can be completed within 35 min or 45 min, and the detection limit was up to 6.97 × 102 copies/mL. And there was no cross reaction with human bocavirus, respiratory syncytial virus, adenovirus and parainfluenza virus. By combining with LF, the detection results were evaluated by naked eyes. Furthermore, 28 clinical samples were applied to examine the performance of RT-RPA-Cas12a system. The detection coincidence rates of RT-RPA-Cas12a-fluorescence and RT-RPA-Cas12a-LF with quantitative RT-PCR were 96.4% and 92.9%, respectively. Together, the new method for detecting HmPV with high sensitivity and specificity based on RT-RPA-Cas12a-fluorescence or LF shows promising potential for clinical diagnosis of HmPV without professional skills or ancillary equipment.


Assuntos
Metapneumovirus , Sistemas CRISPR-Cas , Humanos , Metapneumovirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Transcrição Reversa , Sensibilidade e Especificidade
10.
J Fish Dis ; 44(11): 1799-1809, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34310732

RESUMO

Antibiotics are the most powerful weapon against bacterial infectious diseases in aquaculture. However, the indiscriminate usage of antibiotics often culminates in the emerging development of antibiotic-resistant bacteria, making it imperative to search for novel types of antimicrobial agents. This study investigated the antibacterial and antivirulence effects of vanillic acid (VA) against the fish pathogen, Vibrio alginolyticus. We showed that VA had a good anti-Vibrio activity with minimal inhibitory concentration (MIC) of 1.0 mg/ml. In addition, VA wielded its antibacterial action in a dose-/time-dependent manner by causing cell membrane damage and increasing membrane permeability, which is evidenced by increasing the conductivity and malondialdehyde content in the treated cell cultures and the scanning electron microscopy images. Furthermore, VA significantly reduced the biofilm-forming capability, mobility and exotoxin production (protease and exopolysaccharide) and downregulation of the expression of biofilm- and virulence-associated genes (sypG, fliS, fliK, lafA, lafK, asp and luxR) was seen in the V. alginolyticus that exposed to VA at subinhibitory concentrations. Overall, our findings suggested that VA may be of interest for treating V. alginolyticus-associated infections in aquaculture.


Assuntos
Biofilmes/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Ácido Vanílico/farmacologia , Vibrio alginolyticus/efeitos dos fármacos , Antibacterianos/farmacologia , Permeabilidade da Membrana Celular , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Vibrio alginolyticus/ultraestrutura , Virulência
11.
Enzyme Microb Technol ; 134: 109480, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32044027

RESUMO

Isofloridoside (D-isofloridoside and L-isofloridoside) is the main photosynthetic product in red algae. Here, given the importance of isofloridoside, a potentially effective method to produce isofloridoside from galactose and glycerol using whole-cell biocatalysts harboring α-galactosidase was developed. α-Galactosidase-encoding genes from Alicyclobacillus hesperidum, Lactobacillus plantarum, and Bifidobacterium adolescentis were cloned and the proteins were overproduced in Escherichia coli. The α-galactosidase from A. hesperidum (AHGLA) was chosen to synthesize isofloridoside. The effects of reaction pH, temperature, and substrate concentration were investigated. In the optimum biotransformation conditions, the final isofloridoside concentration reached 0.45 M (galactose conversion 23 %). The reaction mixtures were purified using activated charcoal and calcined Celite, and the purified product was identified as a mixture of D- and L-isofloridoside by liquid chromatography-mass spectrometry and nuclear magnetic resonance. This study provides a possible feasible method for the biosynthesis of isofloridoside from low-cost glycerol and galactose.


Assuntos
Alicyclobacillus/enzimologia , Galactose/metabolismo , Galactosídeos/biossíntese , Glicerol/metabolismo , alfa-Galactosidase/metabolismo , Alicyclobacillus/genética , Bifidobacterium adolescentis/enzimologia , Bifidobacterium adolescentis/genética , Biocatálise , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Temperatura , alfa-Galactosidase/genética
12.
Appl Microbiol Biotechnol ; 104(4): 1707-1720, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31907574

RESUMO

Vibrio alginolyticus is an important fish pathogen causing pandemic diseases in marine animals. Small noncoding RNAs (sRNAs) are important posttranscriptional modulators of gene expression and involved in the pathogenesis of bacterial pathogens. Thus far, no cell density-dependent sRNA has been reported in V. alginolyticus. In this study, a cell density-dependent sRNA, Qrr, predicted based on the previous RNA-Seq analysis of V. alginolyticus cultured at low cell density (LCD) and high cell density (HCD), was characterized. The Qrr mutant showed significantly impaired growth and decreased swimming and swarming ability, and increased biofilm formation, extracellular polysaccharide content, serine protease production, and LD50 values during zebrafish infection in contrast to the wild-type strain. Qrr modulates the master regulators LuxR and AphA in quorum sensing (QS) pathways possibly at the posttranscriptional level by base pairing with the 5'-untranslated regions (5'-UTRs). Meanwhile, both LuxR and AphA could directly bind to the promoter of qrr to activate or repress its transcription, respectively. Moreover, our unbiased metabolic approaches revealed that Qrr modulates a large quantity of metabolic and lipidomic pathways, including amino acids, purine and pyrimidine derivatives, tricarboxylic acid cycle (TCA cycle) intermediates, and lipids. Collectively, this work contributes to a systematic understanding of regulatory roles of the cell density-dependent sRNA, Qrr, in V. alginolyticus.


Assuntos
Percepção de Quorum/genética , Pequeno RNA não Traduzido/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Regiões 5' não Traduzidas , Animais , Biofilmes/crescimento & desenvolvimento , Dose Letal Mediana , Mutação , Processamento Pós-Transcricional do RNA , Vibrio alginolyticus/patogenicidade , Virulência , Peixe-Zebra
13.
Opt Express ; 26(13): 17066-17077, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119524

RESUMO

A new method for non-mechanical laser beam splitting and steering is demonstrated. Two cascaded liquid crystal optical phased arrays (LC-OPAs) controllably modulate the amplitude and phase of an incident laser beam to realize the near-field wavefronts of multiple simultaneous beams with arbitrary directions. Diffraction between the two arrays is avoided by precise 4-f imaging from one LC-OPA to the other (array resolution 1×1920). In the method of cascaded amplitude and phase (CAP) devices, numerical simulation results show the characteristics of amplitude and phase modulation profiles, as well as the far-field intensity patterns. Both the numerical and experimental results clearly demonstrate the capabilities of fast multi-beam forming with high efficiency (>85%, 4 beams) and accuracy (deviation <90µrad).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...