Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 130: 155732, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38776738

RESUMO

BACKGROUND: The increase in antimicrobial resistance leads to complications in treatments, prolonged hospitalization, and increased mortality. Glabridin (GLA) is a hydroxyisoflavan from Glycyrrhiza glabra L. that exhibits multiple pharmacological activities. Colistin (COL), a last-resort antibiotic, is increasingly being used in clinic against Gram-negative bacteria. Previous reports have shown that GLA is able to sensitize first line antibiotics such as norfloxacin and vancomycin on Staphylococcus aureus, implying that the use of GLA as an antibiotic adjuvant is a promising strategy for addressing the issue of drug resistance. However, the adjuvant effect on other antibiotics, especially COL, on Gram-negative bacteria such as Escherichia coli has not been studied. PURPOSE: The objective of our study was to investigate the targets of GLA and the synergistic effect of GLA and COL in E. coli, and to provide further evidence for the use of GLA as an antibiotic adjuvant to alleviate the problem of drug resistance. METHODS: We first investigated the interaction between GLA and enoyl-acyl carrier protein reductase, also called "FabI", through enzyme inhibition assay, differential scanning fluorimetry, isothermal titration calorimetry and molecular docking assay. We tested the transmembrane capacity of GLA on its own and combined it with several antibiotics. The antimicrobial activities of GLA and COL were evaluated against six different susceptible and resistant E. coli in vitro. Their interactions were analyzed using checkerboard assay, time-kill curve and CompuSyn software. A series of sensitivity tests was conducted in E. coli overexpressing the fabI gene. The development of COL resistance in the presence of GLA was tested. The antimicrobial efficacy of GLA and COL in a mouse model of urinary tract infection was assessed. The anti-biofilm effects of GLA and COL were investigated. RESULTS: In this study, enzyme kinetic analysis and thermal analysis provided evidence for the interaction between GLA and FabI in E. coli. GLA enhanced the antimicrobial effect of COL and synergistically suppressed six different susceptible and resistant E. coli with COL. Overexpression experiments showed that targeted inhibition of FabI was a key mechanism by which GLA synergistically enhanced COL activity. The combination of GLA and COL slowed the development of COL resistance in E. coli. Combined GLA and COL treatment significantly reduced bacterial load and mitigated urinary tract injury in a mouse model of E. coli urinary tract infection. Additionally, GLA + COL inhibited the formation and eradication of biofilms and the synthesis of curli. CONCLUSION: Our findings indicate that GLA synergistically enhances antimicrobial activities of COL by targeting inhibition of FabI in E. coli. GLA is expected to continue to be developed as an antibiotic adjuvant to address drug resistance issues.

2.
Eur J Med Chem ; 272: 116448, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704936

RESUMO

Colorectal cancer (CRC) is trending to be a major health problem throughout the world. Therapeutics with dual modes of action have shown latent capacity to create ideal anti-tumor activity. Signal transducer and activator of transcription 3 (STAT3) has been proved to be a potential target for the development of anti-colon cancer drug. In addition, modulation of tumor redox homeostasis through deploying exogenous reactive oxygen species (ROS)-enhancing agents has been widely applied as anti-tumor strategy. Thus, simultaneously targeting STAT3 and modulation ROS balance would offer a fresh avenue to combat CRC. In this work, we designed and synthesized a novel series of isoxazole-fused quinones, which were evaluated for their preliminary anti-proliferative activity against HCT116 cells. Among these quinones, compound 41 exerted excellent in vitro anti-tumor effect against HCT116 cell line with an IC50 value of 10.18 ± 0.4 nM. Compound 41 was proved to bind to STAT3 by using Bio-Layer Interferometry (BLI) assay, and can significantly inhibit phosphorylation of STAT3. It also elevated ROS of HCT116 cells by acting as a substrate of NQO1. Mitochondrial dysfunction, apoptosis, and cell cycle arrest, which was caused by compound 41, might be partially due to the inhibition of STAT3 phosphorylation and ROS production induced by 41. Moreover, it exhibited ideal anti-tumor activity in human colorectal cancer xenograft model and good safety profiles in vivo. Overall, this study provided a novel quinone derivative 41 with excellent anti-tumor activity by inhibiting STAT3 and elevating ROS level, and gave insights into designing novel anti-tumor therapeutics by simultaneously modulation of STAT3 and ROS.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Neoplasias Colorretais , Ensaios de Seleção de Medicamentos Antitumorais , Isoxazóis , Quinonas , Espécies Reativas de Oxigênio , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Animais , Isoxazóis/farmacologia , Isoxazóis/química , Isoxazóis/síntese química , Quinonas/farmacologia , Quinonas/química , Quinonas/síntese química , Apoptose/efeitos dos fármacos , Estrutura Molecular , Camundongos , Relação Dose-Resposta a Droga , Células HCT116 , Camundongos Nus , Camundongos Endogâmicos BALB C
3.
J Med Chem ; 67(6): 4757-4781, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466654

RESUMO

The high lethality of Staphylococcus aureus infections and the emergence of antibiotic resistance make the development of new antibiotics urgent. Our previous work identified a hit compound h1 (AF-353) as a novel Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor. Herein, we analyzed the antimicrobial profile of h1 and performed a comprehensive structure-activity relationship (SAR) assay based on h1. The representative compound j9 exhibited potent antibacterial activity against S. aureus without cross-resistance to other antimicrobial classes. Multiple genetic and biochemical approaches showed that j9 directly binds to SaDHFR, resulting in strong inhibition of its enzymatic activity (IC50 = 0.97 nM). Additionally, j9 had an acceptable in vivo safety profile and oral bioavailability (F = 40.7%) and also showed favorable efficacy in a mouse model of methicillin-resistant S. aureus (MRSA) skin infection. Collectively, these findings identified j9 as a novel SaDHFR inhibitor with the potential to combat drug-resistant S. aureus infections.


Assuntos
Antagonistas do Ácido Fólico , Staphylococcus aureus Resistente à Meticilina , Éteres Fenílicos , Pirimidinas , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Antagonistas do Ácido Fólico/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
4.
Biochem Pharmacol ; 219: 115957, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049007

RESUMO

Inflammatory bowel disease (IBD) is a chronic immune-mediated disease associated with a high recurrence rate and an elevated risk of colon cancer. In this study, we screened a bioactive compound library using a luciferase reporter assay and identified the compound TAK875 as a novel inhibitor of signal transducer and activator of transcription 3 (STAT3). Surface plasmon resonance analysis, differential scanning fluorimetry, and isothermal titration calorimetry demonstrated that TAK875 directly bound to recombinant STAT3. TAK875 suppressed the lipopolysaccharide (LPS)-induced release of nitric oxide, inducible nitric oxide synthase, and inflammatory factors in RAW264.7 cells, likely by inhibiting STAT3 phosphorylation. In addition, TAK875 inhibited the differentiation of CD4+ T cells into T-helper 17 cells, which may partially account for its anti-inflammatory effect. TAK875 also alleviated the LPS-induced accumulation of intracellular reactive oxygen species, thus displaying its antioxidant effects. Finally, we demonstrated its satisfactory anti-inflammatory effect in a dextran sulfate sodium-induced mouse model of ulcerative colitis. In conclusion, this study presented TAK875 as a novel STAT3 inhibitor and demonstrated its anti-inflammatory and antioxidant effects both in vitro and in vivo.


Assuntos
Doenças Inflamatórias Intestinais , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lipopolissacarídeos , NF-kappa B/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores
5.
Pharmaceutics ; 14(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36365238

RESUMO

A novel class of quinoxaline-arylfuran derivatives were designed, synthesized, and preliminarily evaluated for their antiproliferative activities in vitro against several cancer cell lines and normal cells. The representative derivative QW12 exerts a potent antiproliferative effect against HeLa cells (IC50 value of 10.58 µM), through inducing apoptosis and triggering ROS generation and the accumulation of HeLa cells in vitro. Western blot analysis showed that QW12 inhibits STAT3 phosphorylation (Y705) in a dose-dependent manner. The BLI experiment directly demonstrated that QW12 binds to the STAT3 recombination protein with a KD value of 67.3 µM. Furthermore, molecular docking investigation showed that QW12 specifically occupies the pY+1 and pY-X subpocket of the SH2 domain, thus blocking the whole transmission signaling process. In general, these findings indicated that the study of new quinoxaline-aryfuran derivatives as inhibitors of STAT3 may lead to new therapeutic medical applications for cancer in the future.

6.
Pharmaceutics ; 14(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36297539

RESUMO

A series of novel naphthoquinone-furan-2-cyanoacryloyl hybrids were designed; they were synthesized and preliminarily evaluated for their anti-proliferative activities in vitro against several cancer cell lines and normal cells. The most potent compound, 5c, inhibited the proliferation of HeLa cells (IC50 value of 3.10 ± 0.02 µM) and colony survival, and it induced apoptosis while having relatively weaker effects on normal cells. Compound 5c also triggered ROS generation and accumulation, thus partially contributing to the observed cell apoptosis. A Western blotting analysis demonstrated that compound 5c inhibited the phosphorylation of STAT3. Furthermore, a biolayer interferometry (BLI) analysis confirmed that compound 5c had a direct effect on STAT3, with a KD value of 13.0 µM. Molecular docking showed that 5c specifically occupied the subpockets in the SH2 domain, thereby blocking the whole transmission signaling process. Overall, this study provides an important structural reference for the development of effective antitumor agents.

7.
Diabetes Res Clin Pract ; 93(1): 17-20, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21420752

RESUMO

OBJECTIVE: To investigate the HbA(1c) proportion and mortality rate across diabetic patients with severe hypoglycemia and the risk factors for death. METHODS: All the diabetic patients with severe hypoglycemia were divided into HbA(1c)<6.5% group and HbA(1c)≥6.5% group. The proportion of HbA(1c), mortality rate and the risk factors for death were analyzed. Common causes for severe hypoglycemia were also analyzed. RESULTS: The percentages of HbA(1c) in the HbA(1c)<6.5% and HbA(1c)≥6.5% groups were 51.2% and 48.8%, respectively. The mortality rates were not significantly different between the 2 groups (5.3% vs. 5.1%, χ(2)=0.01, p=0.17). Binary logistic regression analysis revealed that in both groups, creatinine, aspartate aminotransferase, and uric acid levels were the risk factors for death. In the HbA(1c)<6.5% and HbA(1c)≥6.5% groups, 65.0% and 64.2% showed common causes of severe hypoglycemia, respectively. CONCLUSIONS: With respect to severe hypoglycemia, equal attention should be paid to patients with an HbA(1c) level of ≥6.5% and those with an HbA(1c) level of <6.5%. The mortality rate is approximately 5% in severe hypoglycemia no matter how the HbA(1c) level is. Creatinine, aspartate aminotransferase, and uric acid are the main risk factors in both groups. Two-thirds of severe hypoglycemia cases could be prevented.


Assuntos
Diabetes Mellitus/metabolismo , Diabetes Mellitus/mortalidade , Hemoglobinas Glicadas/metabolismo , Hipoglicemia/metabolismo , Hipoglicemia/mortalidade , Idoso , Idoso de 80 Anos ou mais , Aspartato Aminotransferases/metabolismo , Creatinina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Ácido Úrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...