Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(5): 1625-1639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282386

RESUMO

The circadian clock plays multiple functions in the regulation of plant growth, development and response to various abiotic stress. Here, we showed that the core oscillator component late elongated hypocotyl (LHY) was involved in rice response to salt stress. The mutations of OsLHY gene led to reduced salt tolerance in rice. Transcriptomic analyses revealed that the OsLHY gene regulates the expression of genes related to ion homeostasis and the abscisic acid (ABA) signalling pathway, including genes encoded High-affinity K+ transporters (OsHKTs) and the stress-activated protein kinases (OsSAPKs). We demonstrated that OsLHY directly binds the promoters of OsHKT1;1, OsHKT1;4 and OsSAPK9 to regulate their expression. Moreover, the ossapk9 mutants exhibited salt tolerance under salt stress. Taken together, our findings revealed that OsLHY integrates ion homeostasis and the ABA pathway to regulate salt tolerance in rice, providing insights into our understanding of how the circadian clock controls rice response to salt stress.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Hipocótilo/metabolismo , Oryza/fisiologia , Estresse Salino , Homeostase , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
2.
BMC Plant Biol ; 19(1): 345, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31390991

RESUMO

BACKGROUND: Aquaporin (AQP) proteins comprise a group of membrane intrinsic proteins (MIPs) that are responsible for transporting water and other small molecules, which is crucial for plant survival under stress conditions including salt stress. Despite the vital role of AQPs, little is known about them in cucumber (Cucumis sativus L.). RESULTS: In this study, we identified 39 aquaporin-encoding genes in cucumber that were separated by phylogenetic analysis into five sub-families (PIP, TIP, NIP, SIP, and XIP). Their substrate specificity was then assessed based on key amino acid residues such as the aromatic/Arginine (ar/R) selectivity filter, Froger's positions, and specificity-determining positions. The putative cis-regulatory motifs available in the promoter region of each AQP gene were analyzed and results revealed that their promoter regions contain many abiotic related cis-regulatory elements. Furthermore, analysis of previously released RNA-seq data revealed tissue- and treatment-specific expression patterns of cucumber AQP genes (CsAQPs). Three aquaporins (CsTIP1;1, CsPIP2;4, and CsPIP1;2) were the most transcript abundance genes, with CsTIP1;1 showing the highest expression levels among all aquaporins. Subcellular localization analysis in Nicotiana benthamiana epidermal cells revealed the diverse and broad array of sub-cellular localizations of CsAQPs. We then performed RNA-seq to identify the expression pattern of CsAQPs under salt stress and found a general decreased expression level of root CsAQPs. Moreover, qRT-PCR revealed rapid changes in the expression levels of CsAQPs in response to diverse abiotic stresses including salt, polyethylene glycol (PEG)-6000, heat, and chilling stresses. Additionally, transient expression of AQPs in N. benthamiana increased leaf water loss rate, suggesting their potential roles in the regulation of plant water status under stress conditions. CONCLUSIONS: Our results indicated that CsAQPs play important roles in response to salt stress. The genome-wide identification and primary function characterization of cucumber aquaporins provides insight to elucidate the complexity of the AQP gene family and their biological functions in cucumber.


Assuntos
Aquaporinas/fisiologia , Cucumis sativus/genética , Proteínas de Plantas/fisiologia , Aquaporinas/genética , Aquaporinas/metabolismo , Cucumis sativus/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...