Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Risk Manag Healthc Policy ; 17: 843-853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617594

RESUMO

Purpose: The purpose of the study was to determine the status of spiritual needs and influencing factors of postoperative breast cancer (BC) women undergoing chemotherapy. Participants and Methods: This study is a cross-sectional study. A total of 173 participants completed a general information questionnaire and a Chinese version of the Spiritual Needs Scale at the Guangxi Medical University Cancer Hospital. Data were collected by purposive sampling from December 2022 to April 2023. Data were analyzed by descriptive statistics, independent t-test, ANOVA, non-parametric test, and logistic regression analysis. Results: The spiritual needs of postoperative BC women undergoing chemotherapy were at a high level (84.20 ± 12.86). The need for "hope and peace" was considered paramount and the need for a "relationship with transcendence" was considered the least important. Significant differences were found in the following: spiritual needs total score (P=0.040) and "hope and peace" (P=0.021) in education level; "love and connection" in disease stage (P=0.021); "meaning and purpose" in education level (P=0.013), household income (P=0.012), and payment method (P=0.015); "relationship with transcendence" in religion (P<0.001); and "acceptance of dying" in marital status (P=0.023). The level of education was the influencing factor of spiritual needs (OR=1.50, P=0.005), especially for "hope and peace" (OR=1.50, P=0.012). Conclusion: The spiritual need of postoperative BC Chinese women undergoing chemotherapy is at a high level and should receive more attention. In clinical work, nurses should fully assess the spiritual needs of patients and meet their specific needs. Results may help nurses to develop targeted and comprehensive spiritual intervention strategies according to the characteristics of patients.

2.
J Ethnopharmacol ; 330: 118229, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670403

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY: To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS: Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS: Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION: The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.


Assuntos
Metabolômica , Polifenóis , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Thymus (Planta) , Animais , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Thymus (Planta)/química , Polifenóis/farmacologia , Polifenóis/farmacocinética , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/farmacocinética , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética
3.
J Ethnopharmacol ; 328: 118058, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513778

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY: To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS: Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS: In total, 114 compounds from the water extract of BYD were identified as major compounds. Na2SO3-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION: Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.


Assuntos
Proteínas Quinases Ativadas por AMP , Amidinas , Medicamentos de Ervas Chinesas , Animais , Peixe-Zebra , Estresse Oxidativo , Fadiga/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Antioxidantes , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Bioorg Chem ; 140: 106790, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604095

RESUMO

Thymus quinquecostatus Celak. is an edible herb that widely cultivated in Asia and possesses hepatoprotective activity, but the underlying non-volatile components of this protective activity are not well studied. In this study, combining molecular networking visualization and bioassay-guided fractionation strategies, a pair of novel skeleton diterpenoid enantiomers, (+)- and (-)-thymutatusone A [(+)- and (-)-1], along with one new and one known biogenetically related compounds (2-3) and 16 other known compounds (4-19), were identified from T. quinquecostatus. Their structures were exhaustively characterized by comprehensive spectroscopic data, X-ray diffraction analysis, and ECD calculations. Compounds (±)-1, (-)-1, and (+)-1, with a rare tricyclo [7.3.1.02,7] tridecane skeleton, exhibited potent hepatoprotective activity in HepG2 cells injured by acetaminophen, with EC50 values of 11.5 ± 2.8, 8.4 ± 1.9, and 12.2 ± 0.3 µM respectively. They were more potent than positive drug bifendate (EC50 15.2 ± 1.3). Further, the underlying mechanism for the hepatoprotective activity of compound (-)-1 related to activating the Nrf 2 signaling pathway. What's more, molecular docking and molecular dynamics simulation analysis showed that compound (-)-1 could dock with the active site of Nrf 2 protein and form a stable system through hydrogen bonding. These results suggest that T. quinquecostatus can be used as a valuable source of hepatoprotective activity compounds.


Assuntos
Acetaminofen , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Bioensaio , Cristalografia por Raios X , Compostos Radiofarmacêuticos
6.
Vaccines (Basel) ; 11(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37243072

RESUMO

For SARS-CoV-2 mutants, the effectiveness of the COVID-19 vaccines is still controversial. In this study, we aimed to investigate the clinical characteristics of Omicron-infected patients who completed primary immunization and booster immunization, respectively, during the rapid propagation of the Omicron variant in China. A total of 932 patients with confirmed SARS-CoV-2 infection from 18 December 2022 to 1 January 2023 were included in this survey by filling out questionnaires online. The enrolled patients were divided into the primary immunization group and the booster immunization group according to their vaccination status. During the whole course of disease, the most frequent symptoms were fever (90.6%), cough (84.3%), weakness (77.4%), headache and dizziness (76.1%), and myalgia (73.9%). Nearly 90% of the patients had symptoms lasting for less than 10 days, and 39.8% of the patients ended the course of the disease in 4-6 days. A total of 58.8% of these patients had a fever with a maximum body temperature of over 38.5 °C. Moreover, 61.4% of the patients had a fever that lasted less than 2 days. There were no obvious differences in initial symptoms, cardinal symptoms, symptom duration time, maximum body temperature, and fever duration time between the two groups of patients. In addition, no significant difference was found in the positive or negative conversion time of SARS-CoV-2 antigen/nucleic acid between the two groups of patients. For mild patients with Omicron breakthrough infection, enhanced immunization has no significant impact on the clinical performance and duration of viral infection compared with primary immunization. The reasons behind the different clinical manifestations of patients with mild symptoms after the breakthrough infection of the Omicron strain are still worth further research. Heterologous vaccination may be a better strategy for enhanced immunization, which can help improve the immune protection ability of the population. Further research should be carried out on vaccines against mutant strains and spectral anti-COVID-19 vaccines.

7.
J Pharm Biomed Anal ; 233: 115474, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37229798

RESUMO

MSTG-A, MSTG-B and Gualtherin are three natural methyl salicylate glycosides isolated from Dianbaizhu (Gaultheria leucocarpa var. yunnanensis), which is a traditional Chinese folk medicine widely used for the treatment of rheumatoid arthritis. They share the same mother nucleus with aspirin, exhibit similar activity and have fewer side effects. In this study, the incubation of MSTG-A, MSTG-B and gaultherin monomers with human fecal microbiota (HFM), microbiota in 4 intestinal segments (jejunum, ileum, cecal, and colon) and feces of rats in vitro was carried out to comprehensively and meticulously understand their metabolism by gut microbiota (GM) in the body. MSTG-A, MSTG-B and Gualtherin were hydrolyzed by GM to lose glycosyl moieties. The quantity and position of xylosyl moiety significantly affected the rate and extent of the three components being metabolized. The -glc-xyl fragments of these three components could not be hydrolyzed and broken by GM. In addition, the existence of terminal xylosyl moiety prolonged the degradation time. Different results appeared in metabolism of the three monomers by microbiota of different intestinal segments and feces due to the alternation of the species and abundance of microorganisms along the longitudinal axis of the intestinal lumen. Cecal microbiota had strongest degradation ability on these three components. The metabolic details of GM on MSTG-A, MSTG-B and Gualtherin were clarified in this study, providing data support and basis for clinical development and bioavailability improvement.


Assuntos
Microbioma Gastrointestinal , Glicosídeos , Ratos , Humanos , Animais , Aspirina , Fezes , Biotransformação
8.
Curr Microbiol ; 80(5): 182, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37046126

RESUMO

HmsB, a temperature-dependent sRNA, promotes biofilm formation by Yersinia pestis, but whether its own expression is regulated by other regulators is still poorly understood. RovM is a global regulator that activates biofilm formation but represses the virulence of Y. pestis. In this work, the results of primer extension, quantitative real-time PCR (qRT-PCR), and LacZ fusion demonstrated that RovM was able to activate hmsB expression. However, the results of electrophoretic mobility shift assay (EMSA) showed that His-RovM did not bind to the upstream DNA region of hmsB. Thus, RovM may exert its regulatory action on hmsB expression in an indirect manner. The data presented here enriched the content of the regulatory circuits that control gene expression in Y. pestis.


Assuntos
Yersinia pestis , Animais , Yersinia pestis/genética , RNA , Arvicolinae , Temperatura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
Front Immunol ; 14: 1131933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936921

RESUMO

Introduction: Rheumatoid arthritis (RA) is a multifactorial autoimmune disease. Recently, growing evidence demonstrates that gut microbiota (GM) plays an important role in RA. But so far, no bibliometric studies pertaining to GM in RA have ever been published. This study attempts to depict the knowledge framework in this field from a holistic and systematic perspective based on the bibliometric analysis. Methods: Literature related to the involvement of GM in RA was searched and picked from the Web of Science Core Collection (WOSCC) database. The annual output, cooperation, hotspots, research status and development trend of this field were analyzed by bibliometric software (VOSviewer and Bibliometricx). Results: 255 original research articles and 204 reviews were included in the analysis. The articles in this field that can be retrieved in WOSCC were first published in 2004 and increased year by year since then. 2013 is a growth explosion point. China and the United States are the countries with the most contributions, and Harvard University is the affiliation with the most output. Frontiers in Immunology (total citations = 603) is the journal with the most publications and the fastest growth rate. eLife is the journal with the most citations (total citations = 1248). Scher, Jose U. and Taneja, Veena are the most productive and cited authors. The research in this field is mainly distributed in the evidence, mechanism and practical application of GM participating in RA through the analysis of keywords and documents. There is sufficient evidence to prove the close relationship between GM and RA, which lays the foundation for this field. This extended two colorful and tender branches of mechanism research and application exploration, which have made some achievements but still have broad exploration space. Recently, the keywords "metabolites", "metabolomics", "acid", "b cells", "balance", "treg cells", "probiotic supplementation" appeared most frequently, which tells us that research on the mechanism of GM participating in RA and exploration of its application are the hotspots in recent years. Discussion: Taken together, these results provide a data-based and objective introduction to the GM participating in RA, giving readers a valuable reference to help guide future research.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Microbioma Gastrointestinal , Humanos , Linfócitos B , Bibliometria
10.
J Ethnopharmacol ; 304: 116049, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36529251

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis (SB) is a traditional Chinese medicine (TCM). In the clinical application of TCM, SB has been divided into two specifications (Ziqin and Kuqin) for a long time. At present, the Chinese Pharmacopoeia Commission no longer distinguishes between the two. However, the two specifications of medicinal materials and pieces are still in circulation in the market. AIM OF THE STUDY: This work aimed at investigating the similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities and their material basis. It will provide a new angle for relevant regulations to formulate the specifications and standards of SB. MATERIALS AND METHODS: Here we investigated the similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities related to four zebrafish models and three chemical tests. The chemical fingerprints of SB (Ziqin and Kuqin) were profiled by HPLC. Meanwhile, UHPLC-Q-TOF/MS was used to identify the chemical constituents of Ziqin and Kuqin. The main effect-related compounds of SB, Ziqin, and Kuqin were screened out by spectrum-effect relationship. Finally, six monomeric compounds were validated experimentally using the zebrafish inflammation model induced by CuSO4. RESULTS: Both Ziqin and Kuqin had significant anti-inflammatory, analgesic, and antioxidant activities. Kuqin had better anti-inflammatory and analgesic activities, while Ziqin had better antioxidant activity. HPLC fingerprint and UHPLC-Q-TOF/MS evaluation showed that the chemical composition types and main components of Ziqin and Kuqin were basically the same, while the contents and proportions of chemical components in Ziqin and Kuqin were different. By spectrum-effect relationship, compounds X1, X2 (luteoloside), X3, X4 (baicalin), X6 (wogonoside), X7 (baicalein), X8 (wogonin), and X9 (oroxylin A) were the same active chemical constituents of Ziqin and Kuqin. The core components of anti-inflammatory and analgesia activities in Kuqin were compounds X1, X2, X3, X5, X6, X7, X8, and X9. The antioxidant core active components of Ziqin were compounds X2, X3, X4, X6, X7, and X9. Among them, luteoloside, baicalin, wogonoside, baicalein, wogonin, and oroxylin A were validated successfully with good anti-inflammatory effects. CONCLUSIONS: This study revealed that Ziqin and kuqin have high similarity in chemical composition, but their proportions and active core components are different. This may be one of the main reasons why they have the same activity but different activity trends. These findings will help to improve the understanding of the different clinical applications of Ziqin and Kuqin, and provide a reference for the formulation of quality standards and their further research.


Assuntos
Antioxidantes , Medicamentos de Ervas Chinesas , Animais , Antioxidantes/farmacologia , Peixe-Zebra , Medicamentos de Ervas Chinesas/química , Scutellaria baicalensis/química , Cromatografia Líquida de Alta Pressão , Anti-Inflamatórios não Esteroides , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
11.
Front Pharmacol ; 13: 1027687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561345

RESUMO

Objective: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR) is a traditional botanical drug pair that can promote blood circulation, remove blood stasis, and treat tumors in clinics. The aim of the present study was to investigate the therapeutic material basis and potential mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Method: The chemical profile analyses of CR-SR, CR, and SR were performed by molecular networking and UPLC-LTQ-Orbitrap MSn. The anti-liver cancer activities of CR-SR, CR, and SR were assessed by using a zebrafish xenograft model in vivo for the first time and detected by the HepG2 cell model in vitro. Combining the network analysis and molecular docking, real-time quantitative polymerase chain reaction (RT-qPCR) experiments were undertaken to further explore the mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Results: In total, 65 components were identified in CR-SR, CR, and SR. Based on the clusters of molecular networking, a total of 12 novel diarylheptanoids were identified from CR-SR and CR. By combining our results with information from the literature, 32 sesquiterpenoids and 21 cyclic dipeptides were identified from CR-SR, CR, and SR. The anti-liver cancer activities were observed in both the drug pair and the single botanical drugs in vitro and in vivo, and the order of activity was CR-SR > CR > SR. They could downregulate the expression of proto-oncogene tyrosine-protein kinase Src (SRC), epidermal growth factor receptor (EGFR), estrogen receptor-α (ESR1), prostaglandin endoperoxide synthase 2 (PTGS2), and amyloid precursor protein (APP). Conclusion: Taken together, the present study provided an experimental basis for the therapeutic material basis and potential molecular mechanisms of CR-SR, CR, and SR. This study provided a novel insight for objective clinical treatment of liver cancer.

12.
Front Immunol ; 13: 975533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248883

RESUMO

Background: COVID-19 has caused a global pandemic and the death toll is increasing. With the coronavirus continuously mutating, Omicron has replaced Delta as the most widely reported variant in the world. Studies have shown that the plasma of some vaccinated people does not neutralize the Omicron variant. However, further studies are needed to determine whether plasma neutralizes Omicron after one- or two-dose vaccine in patients who have recovered from infection with the original strain. Methods: The pseudovirus neutralization assays were performed on 64 plasma samples of convalescent COVID-19 patients, which were divided into pre-vaccination group, one-dose vaccinated group and two-dose vaccinated group. Results: In the three groups, there were significant reductions of sera neutralizing activity from WT to Delta variant (B.1.617.2), and from WT to Omicron variant (B.1.1.529) (ps<0.001), but the difference between Delta and Omicron variants were not significant (p>0.05). The average neutralization of the Omicron variant showed a significant difference between pre-vaccination and two-dose vaccinated convalescent individuals (p<0.01). Conclusions: Among the 64 plasma samples of COVID-19 convalescents, whether vaccinated or not, Omicron (B.1.1.529) escaped the neutralizing antibodies, with a significantly decreased neutralization activity compared to WT. And two-dose of vaccine could significantly raise the average neutralization of Omicron in convalescent individuals.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização , SARS-CoV-2
13.
Can J Microbiol ; 68(7): 501-506, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35801716

RESUMO

Yersinia pestis, the causative agent of plague, is one of the most dangerous pathogens in the world. Both the cyclic AMP receptor protein (CRP) and ferric uptake regulator (Fur) are global regulators that control the expression of a great deal of genes involved in a variety of cellular functions in Y. pestis. In this work, two CRP box-like deoxyribonucleic acid (DNA) sequences were detected in the upstream DNA region of fur, suggesting that the transcription of fur might be directly regulated by CRP in Y. pestis. Thus, transcriptional regulation of fur by CRP was investigated by primer extension, quantitative real-time PCR, LacZ fusion, and electrophoretic mobility shift assays. The results demonstrated that CRP was able to bind the regulatory DNA region of fur to activate its transcription. The data presented here not only suggested that the CRP and Fur regulons were bridged together via the direct regulation of fur by CRP, but also provided us a deeper understanding of the transcriptional regulation of fur in Y. pestis.


Assuntos
Proteína Receptora de AMP Cíclico , Yersinia pestis , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Yersinia pestis/genética , Yersinia pestis/metabolismo
14.
Microb Pathog ; 169: 105659, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35760284

RESUMO

Biofilms formed by Yersinia pestis are able to attach to and block flea's proventriculus, which stimulates the transmission of this pathogen from fleas to mammals. In this study, we found that Nlp (YP1143) enhanced biofilm formation by Y. pestis and had regulatory effects on biofilm-associated genes at the transcriptional level. Phenotypic assays, including colony morphology assay, crystal violet staining, and Caenorhabditis elegans biofilm assay, disclosed that Nlp strongly promoted biofilm formation by Y. pestis. Further gene regulation assays showed that Nlp stimulated the expression of hmsHFRS, hmsCDE and hmsB, while had no regulatory effect on the expression of hmsT and hmsP at the transcriptional level. These findings promoted us to gain more understanding of the complex regulatory circuits controlling biofilm formation by Y. pestis.


Assuntos
Peste , Yersinia pestis , Animais , Arvicolinae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Yersinia pestis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...