Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Aging Dis ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739931

RESUMO

Diabetic foot ulcers (DFUs) are a prevalent and profoundly debilitating complication that afflicts individuals with diabetes mellitus (DM). These ulcers are associated with substantial morbidity, recurrence rates, disability, and mortality, imposing substantial economic, psychological, and medical burdens. Timely detection and intervention can mitigate the morbidity and disparities linked to DFU. Nevertheless, current therapeutic approaches for DFU continue to grapple with multifaceted limitations. A growing body of evidence emphasizes the crucial role of cellular senescence in the pathogenesis of chronic wounds. Interventions that try to delay cellular senescence, eliminate senescent cells (SnCs), or suppress the senescence-associated secretory phenotype (SASP) have shown promise for helping chronic wounds to heal. In this context, targeting cellular senescence emerges as a novel therapeutic strategy for DFU. In this comprehensive review, we look at the pathology and treatment of DFU in a systematic way. We also explain the growing importance of investigating SnCs in DFU and highlight the great potential of senotherapeutics that target SnCs in DFU treatment. The development of efficacious and safe senotherapeutics represents a pioneering therapeutic approach aimed at enhancing the quality of life for individuals affected by DFU.

2.
Aging Cell ; 23(5): e14127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426629

RESUMO

Domestic dogs have great potential to expand our understanding of the determinants of aging. To understand the aging pattern of domestic dogs and evaluate whether they can be used as an aging model, we performed RNA sequencing on white blood cells from domestic dogs aged 1-9 years and treated aged dogs with classical antiaging approaches. We obtained 30 RNA sequencing libraries and identified 61 age-associated genes with dynamic changes, the majority of which were related to metabolism and immune function, which may be predominant biomarkers for aging in dogs. We next treated aged dogs with canine mesenchymal stem cells (cMSCs), nicotinamide mononucleotide, and rapamycin to determine whether and how they responded to the antiaging interventions. The results showed that these treatments can significantly reduce the level of inflammatory factors (IL-6 and TNF-α). MSCs effectively improved the heart functions of aged dogs. Three key potential age-related genes (PYCR1, CCRL2, and TOX) were reversed by MSC treatment, two of which (CCRL2 and TOX) are implicated in immunity. Overall, we profiled the transcriptomic pattern of domestic dogs and revealed that they may be a good model of aging, especially in anti-inflammatory investigations.


Assuntos
Transcriptoma , Animais , Cães , Transcriptoma/genética , Inflamação/genética , Envelhecimento/genética , Anti-Inflamatórios/farmacologia , Células-Tronco Mesenquimais/metabolismo
3.
Bioorg Med Chem Lett ; 98: 129593, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104906

RESUMO

Selective removal of senescent cells (SnCs) offers a promising therapeutic strategy to treat chronic and age-related diseases. Our prior investigations led to the discovery of piperlongumine (PL) and its derivatives as senolytic agents. In this study, our medicinal chemistry campaign on both the α,ß-unsaturated δ-valerolactam ring and the phenyl ring of PL culminated in the identification of compound 24, which exhibited an impressive 50-fold enhancement in senolytic activity against senescent WI-38 fibroblasts compared to PL.


Assuntos
Senescência Celular , Senoterapia
4.
Aging Dis ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962459

RESUMO

All linear chromosomal ends have specific DNA-protein complexes called telomeres. Telomeres serve as a "molecular clock" to estimate the potential length of cell replication. Shortening of telomere length (TL) is associated with cellular senescence, aging, and various age-related diseases in humans. Here we reviewed the structure, function, and regulation of telomeres and the age-related diseases associated with telomere attrition. Among the various determinants of TL, we highlight the connection between TL and heredity to provide a new overview of genetic determinants for TL. Studies across multiple species have shown that maternal and paternal TL influence the TL of their offspring, and this may affect life span and their susceptibility to age-related diseases. Hence, we reviewed the linkage between TL and parental influences and the proposed mechanisms involved. More in-depth studies on the genetic mechanism for TL attrition are needed due to the potential application of this knowledge in human medicine to prevent premature frailty at its earliest stage, as well as promote health and longevity.

5.
Aging Cell ; 22(8): e13896, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312431

RESUMO

Senescent cells (SnCs) are implicated in aging and various age-related pathologies. Targeting SnCs can treat age-related diseases and extend health span. However, precisely tracking and visualizing of SnCs is still challenging, especially in in vivo environments. Here, we developed a near-infrared (NIR) fluorescent probe (XZ1208) that targets ß-galactosidase (ß-Gal), a well-accepted biomarker for cellular senescence. XZ1208 can be cleaved rapidly by ß-Gal and produces a strong fluorescence signal in SnCs. We demonstrated the high specificity and sensitivity of XZ1208 in labeling SnCs in naturally aged, total body irradiated (TBI), and progeroid mouse models. XZ1208 achieved a long-term duration of over 6 days in labeling senescence without causing significant toxicities and accurately detected the senolytic effects of ABT263 on eliminating SnCs. Furthermore, XZ1208 was applied to monitor SnCs accumulated in fibrotic diseases and skin wound healing models. Overall, we developed a tissue-infiltrating NIR probe and demonstrated its excellent performance in labeling SnCs in aging and senescence-associated disease models, indicating great potential for application in aging studies and diagnosis of senescence-associated diseases.


Assuntos
Envelhecimento , Corantes Fluorescentes , Camundongos , Animais , Corantes Fluorescentes/farmacologia , Envelhecimento/patologia , Senescência Celular , Modelos Animais de Doenças , Fibrose , beta-Galactosidase
6.
Aging Dis ; 14(4): 1374-1389, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163432

RESUMO

Aging is characterized by persistent low-grade systematic inflammation, which is largely responsible for the occurrence of various age-associated diseases. We and others have previously reported that long-lived people (such as centenarians) can delay the onset of or even escape certain major age-related diseases. Here, by screening blood transcriptome and inflammatory profiles, we found that long-lived individuals had a relatively lower inflammation level (IL6, TNFα), accompanied by up-regulation of activating transcription factor 7 (ATF7). Interestingly, ATF7 expression was gradually reduced during cellular senescence. Loss of ATF7 induced cellular senescence, while overexpression delayed senescence progress and senescence-associated secretory phenotype (SASP) secretion. We showed that the anti-senescence effects of ATF7 were achieved by inhibiting nuclear factor kappa B (NF-κB) signaling and increasing histone H3K9 dimethylation (H3K9me2). In Caenorhabditis elegans, ATF7 overexpression significantly suppressed aging biomarkers and extended lifespan. Our findings suggest that ATF7 is a longevity-promoting factor that lowers cellular senescence and inflammation in long-lived individuals.

7.
Cancers (Basel) ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174106

RESUMO

Melanoma is a malignant skin tumor that originates from melanocytes. The pathogenesis of melanoma involves a complex interaction that occurs between environmental factors, ultraviolet (UV)-light damage, and genetic alterations. UV light is the primary driver of the skin aging process and development of melanoma, which can induce reactive oxygen species (ROS) production and the presence of DNA damage in the cells, and results in cell senescence. As cellular senescence plays an important role in the relationship that exists between the skin aging process and the development of melanoma, the present study provides insight into the literature concerning the topic at present and discusses the relationship between skin aging and melanoma, including the mechanisms of cellular senescence that drive melanoma progression, the microenvironment in relation to skin aging and melanoma factors, and the therapeutics concerning melanoma. This review focuses on defining the role of cellular senescence in the process of melanoma carcinogenesis and discusses the targeting of senescent cells through therapeutic approaches, highlighting the areas that require more extensive research in the field.

9.
Comput Struct Biotechnol J ; 20: 4131-4137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016715

RESUMO

Cellular senescence is a dynamic process driven by epigenetic and genetic changes. Although some transcriptomic signatures of senescent cells have been discovered, how these senescence-related signals change over time remains largely unclear. Here, we profiled the transcriptome dynamics of human dermal fibroblast (HDF) cells in successive stages of growth from proliferation to senescence. Based on time-series expression profile analysis, we discovered four trajectories (C1, C2, C3, C4) that are dynamically expressed as senescence progresses. While some genes were continuously up-regulated (C4) or down-regulated (C2) with aging, other genes did not change linearly with cell proliferation, but remained stable until entering the senescent state (C1, C3). Further analysis revealed that the four modes were enriched in different biological pathways, including regulation of cellular senescence. These findings provide a new perspective on understanding the dynamic regulatory mechanism of cellular senescence.

10.
Genes (Basel) ; 13(5)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35627134

RESUMO

Deep RNA sequencing of 164 blood samples collected from long-lived families was performed to investigate the expression patterns of circular RNAs (circRNAs). Unlike that observed in previous studies, circRNA expression in long-lived elderly individuals (98.3 ± 3.4 year) did not exhibit an age-accumulating pattern. Based on weighted circRNA co-expression network analysis, we found that longevous elders specifically gained eight but lost seven conserved circRNA-circRNA co-expression modules (c-CCMs) compared with normal elder controls (spouses of offspring of long-lived individuals, age = 59.3 ± 5.8 year). Further analysis showed that these modules were associated with healthy aging-related pathways. These results together suggest an important role of circRNAs in regulating human lifespan extension.


Assuntos
MicroRNAs , RNA Circular , Idoso , Sequência de Bases , Humanos , Longevidade/genética , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Circular/genética , Análise de Sequência de RNA
11.
Sci Adv ; 8(17): eabf2017, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476452

RESUMO

Adaptation to reduced energy production during aging is a fundamental issue for maintaining healthspan or prolonging life span. Currently, however, the underlying mechanism in long-lived people remains poorly understood. Here, we analyzed transcriptomes of 185 long-lived individuals (LLIs) and 86 spouses of their children from two independent Chinese longevity cohorts and found that the ribosome pathway was significantly down-regulated in LLIs. We found that the down-regulation is likely controlled by ETS1 (ETS proto-oncogene 1), a transcription factor down-regulated in LLIs and positively coexpressed with most ribosomal protein genes (RPGs). Functional assays showed that ETS1 can bind to RPG promoters, while ETS1 knockdown reduces RPG expression and alleviates cellular senescence in human dermal fibroblast (HDF) and embryonic lung fibroblast (IMR-90) cells. As protein synthesis/turnover in ribosomes is an energy-intensive cellular process, the decline in ribosomal biogenesis governed by ETS1 in certain female LLIs may serve as an alternative mechanism to achieve energy-saving and healthy aging.


Assuntos
Envelhecimento Saudável , Criança , Feminino , Humanos , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Fatores de Transcrição/metabolismo
12.
Front Cell Dev Biol ; 10: 822816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252191

RESUMO

Cellular senescence is a process that leads to a state of irreversible cell growth arrest induced by a variety of intrinsic and extrinsic stresses. Senescent cells (SnCs) accumulate with age and have been implicated in various age-related diseases in part via expressing the senescence-associated secretory phenotype. Elimination of SnCs has the potential to delay aging, treat age-related diseases and extend healthspan. However, once cells becoming senescent, they are more resistant to apoptotic stimuli. Senolytics can selectively eliminate SnCs by targeting the SnC anti-apoptotic pathways (SCAPs). They have been developed as a novel pharmacological strategy to treat various age-related diseases. However, the heterogeneity of the SnCs indicates that SnCs depend on different proteins or pathways for their survival. Thus, a better understanding of the underlying mechanisms for apoptotic resistance of SnCs will provide new molecular targets for the development of cell-specific or broad-spectrum therapeutics to clear SnCs. In this review, we discussed the latest research progresses and challenge in senolytic development, described the significance of regulation of senescence and apoptosis in aging, and systematically summarized the SCAPs involved in the apoptotic resistance in SnCs.

13.
Life (Basel) ; 12(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35330159

RESUMO

Immunotherapy has revolutionized the established therapeutics against tumors. As the major immunotherapy approach, immune checkpoint inhibitors (ICIs) achieved remarkable success in the treatment of malignancies. However, the clinical gains are far from universal and durable, because of the primary and secondary resistance of tumors to the therapy, or side effects induced by ICIs. There is an urgent need to find safe combinatorial strategies that enhance the response of ICIs for tumor treatment. Diets have an excellent safety profile and have been shown to play pleiotropic roles in tumor prevention, growth, invasion, and metastasis. Accumulating evidence suggests that dietary regimens bolster not only the tolerability but also the efficacy of tumor immunotherapy. In this review, we discussed the mechanisms by which tumor cells evade immune surveillance, focusing on describing the intrinsic and extrinsic mechanisms of resistance to ICIs. We also summarized the impacts of different diets and/or nutrients on the response to ICIs therapy. Combinatory treatments of ICIs therapy with optimized diet regimens own great potential to enhance the efficacy and durable response of ICIs against tumors, which should be routinely considered in clinical settings.

14.
Aging (Albany NY) ; 14(1): 354-367, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995210

RESUMO

Telomere is a unique DNA-protein complex which covers the ends of chromosomes to avoid end fusion and maintain the stability and integrity of chromosomes. Telomere length (TL) shortening has been linked to aging and various age-related diseases in humans. Here we recruited a total of 1031 Chinese individuals aged between 12 and 111 years, including 108 families with parents and their offspring. DNA was extracted from peripheral white blood cells and TL was measured by quantitative PCR (qPCR). We explored the associations of TL with age, gender and clinical variables, and tested the parental effects on TL variation. First, we found that TL was shortened with age, however, TL was better maintained in females than males. Second, there was a robust association of TL between mother and offspring, but not between father and their offspring. In addition, TL was inversely associated with visceral fat index in females, and positively associated with apolipoprotein A levels. Knockdown of the key genes for lipid metabolism (PNPLA2 and CPT1) shortened the TL in HepG2 cells. These findings indicate that TL is maternally inherited, and impairment of lipid metabolism may contribute to the TL shortening in the Chinese population.


Assuntos
Povo Asiático/genética , Metabolismo dos Lipídeos/genética , Telômero/genética , Telômero/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Aging (Albany NY) ; 13(15): 19088-19107, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375950

RESUMO

Aging is associated with an increased susceptibility to adverse inflammatory conditions such as sepsis and cytokine storm. We hypothesized that senescent cells (SnCs) play a central role in this age-associated pathology in part due to their expression of the senescence-associated secretory phenotype (SASP), which may prime SnCs to inflammatory stimulation. To test this hypothesis, we examined the expression of various inflammatory cytokines and chemokines at the levels of gene transcription and protein production in various SnCs in vitro in response to lipopolysaccharide (LPS), interleukin-1ß (IL1ß), and tumor necrosis factor α (TNFα) stimulation. We found that SnCs not only expressed higher basal levels of various inflammatory cytokines and chemokines as a manifestation of the SASP, but more importantly exhibited hyper-activation of the induction of a variety of inflammatory mediators in response to LPS, IL1ß and TNFα stimulation as compared with non-SnCs. This senescence-associated hyper-activation is likely mediated in part via the p38MAPK (p38) and NFκB pathways because LPS stimulation elicited significantly higher levels of p38 phosphorylation and NFκB p65 nuclear translation in SnCs when compared to their non-senescent counterparts and inhibition of these pathways with losmapimod (a p38 specific inhibitor) and BMS-345541 (a selective NFκB inhibitor) attenuated LPS-induced expression of IL6, TNFα, CCL5, and IL1ß mRNA in SnCs. These findings suggest that SnCs may play an important role in the age-related increases in the susceptibility to developing an exacerbated inflammatory response and highlight the potential to use senotherapeutics to ameliorate the severity of various devastating inflammatory conditions in the elderly.


Assuntos
Mediadores da Inflamação/farmacologia , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos , Fenótipo Secretor Associado à Senescência/fisiologia , Linhagem Celular , Ciclopropanos/farmacologia , Humanos , Imidazóis/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Piridinas/farmacologia , Quinoxalinas/farmacologia , Senoterapia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Mech Ageing Dev ; 195: 111468, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33741395

RESUMO

Senescent cells (SCs) accumulate with age and cause various age-related diseases. Clearance of SCs by transgenic or pharmaceutical strategies has been demonstrated to delay aging, treat age-related diseases and extend healthspan. SCs are resistant to various stressors because they are protected from apoptosis by SC anti-apoptotic pathways (SCAPs). Targeting the proteins in the SCAPs with small molecules can selectively kill SCs, the effector proteins are called senolytic targets and the small molecules are called senolytics. Until now, a series of senolytic targets, such as BCL-XL, heat shock protein 90 (HSP90), Na+/K+ ATPase, bromodomain containing 4 (BRD4), and oxidation resistance 1 (OXR1) have been identified. However, current senolytics targeting these proteins still have some limitations in killing SCs in terms of safety, specificity and broad-spectrum activity. To overcome the challenges, some new strategies, such as proteolysis-targeting chimera (PROTAC) technology, chimeric antigen receptor (CAR) T cells, and ß-galactosidase-modified prodrugs, were developed to clear SCs and shown to have promising therapeutic potential. Here we review the significance of SCs in aging and age-related diseases, summarize the known senolytic targets and highlight the emerging new strategies for clearing SCs.


Assuntos
Envelhecimento/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Senescência Celular , Terapia de Alvo Molecular , Proteólise/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Humanos , Imunoterapia Adotiva/métodos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências
17.
Curr Cancer Drug Targets ; 21(7): 608-618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33655859

RESUMO

BACKGROUND: Malignant melanoma (MM) is an aggressive type of skin cancer with a poor prognosis, because MM cells are characterized by unresponsiveness to chemotherapy. OBJECTIVE: In this study, we evaluated the effectiveness of several curcumin analogs on four MM cell lines (SK-MEL-28, MeWo, A-375, and CHL-1) and explored their underlying mechanisms of action. METHODS: Cell viability was measured by a Tetrazolium-based MTS assay. Cell apoptosis, reactive oxygen species (ROS), and cell cycle were assayed by flow cytometry. Protein levels were assayed by western blotting. RESULTS: MM cells are quite resistant to the conventional chemotherapeutics cisplatin and dacarbazine, and the targeted therapy drug vemurafinib. Among the curcumin analogs, EF24 is the most potent compound against the resistant MM cells. EF24 dose and time-dependently reduced the viability of MM cells by inducing apoptosis. Although EF24 did not increase the production of reactive oxygen species (ROS), it upregulated the endoplasmic reticulum (ER) stress marker BiP, but downregulated the unfolded protein response (UPR) signaling. Moreover, treatment of MM cells with EF24 downregulated the expression of the anti-apoptotic protein Bcl-2, as well as the inhibitor of apoptosis proteins (IAPs) XIAP, cIAP1, and Birc7, which are known to protect MM cells from apoptosis. The downregulation of Bcl-2 and IAP expression by EF24 was associated with the inhibition of the NF-κB pathway. CONCLUSION: These findings demonstrate that EF24 is a potent anti-MM agent. The anti-MM effect is likely mediated by the suppression of UPR and the NF-κB pathway.


Assuntos
Antineoplásicos , Curcumina , Melanoma , Piperidonas , Antineoplásicos/farmacologia , Apoptose , Compostos de Benzilideno/farmacologia , Linhagem Celular Tumoral , Curcumina/farmacologia , Humanos , Melanoma/tratamento farmacológico , Piperidonas/farmacologia
18.
Biochem Biophys Res Commun ; 541: 1-7, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33450580

RESUMO

BACKGROUND: Chronic hypoxia plays an important role in the initiation and progression of chronic renal disease. The pathogenic role of chronic hypoxia in tubulointerstitial injury has been investigated widely, but little is known about acute hypoxia implications in glomerular damage. In this study, we investigated the effect of chronic hypoxia on transient receptor potential cation channel 6 (TRPC6) and the underlying mechanism in cultured human podocytes. METHODS: Fluo-3 was used as a calcium indicator of the OAG-induced receptor operated calcium entry (ROCE) and basal [Ca2+]i levels were monitored using laser scanning confocal microscope after exposure of cells to chronic hypoxia. 2-aminoethoxydiphenylborane (2-APB), a pharmacological blocker of TRPCs channels, was used to determine the role of TRPC6 in podocytes under chronic hypoxia. The mRNA expression and protein levels of TRPC6 were determined using Real-time RT-PCR and Western Blotting under normoxic and chronic hypoxic conditions. Actin arrangement was analyzed by confocal microscopy using phalloidin staining of F-actin in podocytes. RESULTS: Cytosolic free Ca2+ was increased by hypoxia or the treatment of TRPC6 agonist OAG under normoxic conditions. The increase of intracellular Ca2+ induced by hypoxia was time- and dose-dependent, which can be inhibited by 2-APB, demonstrating that the changes of intracellular Ca2+ induced by OAG depend on the activation of TRPC6. Further study showed that the TRPC6 expression levels were significantly increased by hypoxia, which were inhibited by the HIF1α inhibitor in podocytes. Similarly, the increase of intracellular Ca2+ induced by hypoxia was decreased when the podocytes were incubated with HIF1α inhibitor. We also found that F-actin was ruptured by hypoxia in podocytes, showing cytoskeleton reorganization. CONCLUSIONS: TRPC6 mRNA and protein expression levels were significantly increased in podocytes under hypoxia, which may result in the increase of intracellular Ca2+. This alternation of TRPC6 may be relevant to the modulation of HIF1α. Hypoxia in podocytes can result in cytoskeleton reorganization, which further leads to podocytes injury and disfunction.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Actinas/metabolismo , Compostos de Boro/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Citoesqueleto/metabolismo , Diglicerídeos/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Oxigênio/metabolismo , Oxigênio/farmacologia , Podócitos/efeitos dos fármacos , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Tempo
19.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32870816

RESUMO

In aging mice, osteoclast number increases in cortical bone but declines in trabecular bone, suggesting that different mechanisms underlie age-associated bone loss in these 2 compartments. Osteocytes produce the osteoclastogenic cytokine RANKL, encoded by Tnfsf11. Tnfsf11 mRNA increases in cortical bone of aged mice, suggesting a mechanism underlying the bone loss. To address this possibility, we aged mice lacking RANKL in osteocytes. Whereas control mice lost cortical bone between 8 and 24 months of age, mice lacking RANKL in osteocytes gained cortical bone during this period. Mice of both genotypes lost trabecular bone with age. Osteoclasts increased with age in cortical bone of control mice but not in RANKL conditional knockout mice. Induction of cellular senescence increased RANKL production in murine and human cell culture models, suggesting an explanation for elevated RANKL levels with age. Overexpression of the senescence-associated transcription factor Gata4 stimulated Tnfsf11 expression in cultured murine osteoblastic cells. Finally, elimination of senescent cells from aged mice using senolytic compounds reduced Tnfsf11 mRNA in cortical bone. Our results demonstrate the requirement of osteocyte-derived RANKL for age-associated cortical bone loss and suggest that increased Tnfsf11 expression with age results from accumulation of senescent cells in cortical bone.


Assuntos
Envelhecimento/patologia , Reabsorção Óssea/patologia , Senescência Celular , Osso Cortical/patologia , Osteócitos/patologia , Ligante RANK/fisiologia , Envelhecimento/metabolismo , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Osso Cortical/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteócitos/metabolismo
20.
J Hematol Oncol ; 13(1): 95, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677976

RESUMO

BACKGROUND: Patients with advanced T cell lymphomas (TCLs) have limited therapeutic options and poor outcomes in part because their TCLs evade apoptosis through upregulation of anti-apoptotic Bcl-2 proteins. Subsets of TCL cell lines, patient-derived xenografts (PDXs), and primary patient samples depend on Bcl-xL for survival. However, small molecule Bcl-xL inhibitors such as ABT263 have failed during clinical development due to on-target and dose-limiting thrombocytopenia. METHODS: We have developed DT2216, a proteolysis targeting chimera (PROTAC) targeting Bcl-xL for degradation via Von Hippel-Lindau (VHL) E3 ligase, and shown that it has better anti-tumor activity but is less toxic to platelets compared to ABT263. Here, we examined the therapeutic potential of DT2216 for TCLs via testing its anti-TCL activity in vitro using MTS assay, immunoblotting, and flow cytometry and anti-TCL activity in vivo using TCL cell xenograft and PDX model in mice. RESULTS: The results showed that DT2216 selectively killed various Bcl-xL-dependent TCL cells including MyLa cells in vitro. In vivo, DT2216 alone was highly effective against MyLa TCL xenografts in mice without causing significant thrombocytopenia or other toxicity. Furthermore, DT2216 combined with ABT199 (a selective Bcl-2 inhibitor) synergistically reduced disease burden and improved survival in a TCL PDX mouse model dependent on both Bcl-2 and Bcl-xL. CONCLUSIONS: These findings support the clinical testing of DT2216 in patients with Bcl-xL-dependent TCLs, both as a single agent and in rational combinations.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma de Células T/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Proteína bcl-X/antagonistas & inibidores , Compostos de Anilina/uso terapêutico , Compostos de Anilina/toxicidade , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Plaquetas/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Sobrevivência de Enxerto , Humanos , Fígado/patologia , Linfoma de Células T/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Piperazinas , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Distribuição Aleatória , Baço/patologia , Sulfonamidas/uso terapêutico , Sulfonamidas/toxicidade , Ubiquitina-Proteína Ligases/química , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...