Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 202: 115132, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697120

RESUMO

Mitochondria-lysosome crosstalk is an intercellular communication platform regulating mitochondrial quality control (MQC). Activated dynamin-related protein 1 (Drp1) with phosphorylation at serine 616 (p-Drp1Ser616) plays a critical role in mitophagy-dependent cell survival and anti-cancer therapy for hepatocellular carcinoma (HCC). However, the underlying mechanisms that p-Drp1Ser616 involved in regulating mitochondria-lysosome crosstalk and mediating anti-HCC therapy remain unknown. HCC cells and mouse xenograft models were conducted to evaluate the relationship between p-Drp1Ser616 and Ras-associated protein 7 (Rab7) and the underlying mechanism by protein phosphatase 2A (PP2A)-B56γ regulating mitophagy via dephosphorylation of p-Drp1Ser616 in HCC. Herein, we found that Drp1 was frequently upregulated and was associated with poor prognosis in HCC. Mitochondrial p-Drp1Ser616 was a novel inter-organelle tethering protein localized to mitochondrion and lysosome membrane contact sites (MCSs) via interaction with Rab7 to trigger an increase in the mitochondria-lysosome crosstalk, resulting in PINK1-Parkin-dependent mitophagy and anti-apoptosis in HCC cells under the treatment of chemotherapy drugs. Moreover, we demonstrate that B56γ-mediated direct dephosphorylation of p-Drp1Ser616 inhibited mitophagy and thus increased mitochondria-dependent apoptosis. Overall, our findings demonstrated that activation of B56γ sensitizes the anti-cancer effect of HCC chemoprevention via dephosphorylated regulation of p-Drp1Ser616 in inhibiting the interaction between p-Drp1Ser616 and Rab7, which may provide a novel mechanism underlying the theranostics for targeting intervention in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteína Fosfatase 2/metabolismo
2.
Cancers (Basel) ; 14(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159089

RESUMO

Mitochondria are highly dynamic organelles and undergo constant fission and fusion, which are both essential for the maintenance of cell physiological functions. Dysregulation of dynamin-related protein 1 (Drp1)-dependent mitochondrial dynamics is associated with tumorigenesis and the chemotherapeutic response in hepatocellular carcinoma (HCC). The enzyme cyclooxygenase-2 (COX-2) is overexpressed in most cancer types and correlates with a poor prognosis. However, the roles played by the translocation of mitochondrial COX-2 (mito-COX-2) and the interaction between mito-COX-2 and Drp1 in chemotherapeutic responses remain to be elucidated in the context of HCC. Bioinformatics analysis, paired HCC patient specimens, xenograft nude mice, immunofluorescence, transmission electron microscopy, molecular docking, CRISPR/Cas9 gene editing, proximity ligation assay, cytoplasmic and mitochondrial fractions, mitochondrial immunoprecipitation assay, and flow cytometry analysis were performed to evaluate the underlying mechanism of how mito-COX-2 and p-Drp1Ser616 interaction regulates the chemotherapeutic response via mitochondrial dynamics in vitro and in vivo. We found that COX-2 and Drp1 were frequently upregulated and confer a poor prognosis in HCC. We also found that the proportion of mito-COX-2 and p-Drp1Ser616 was increased in HCC cell lines. In vitro, we demonstrated that the enhanced mitochondrial translocation of COX-2 promotes its interaction with p-Drp1Ser616 via PTEN-induced putative kinase 1 (PINK1)-mediated Drp1 phosphorylation activation. This increase was associated with higher colony formation, cell proliferation, and mitochondrial fission. These findings were confirmed by knocking down COX-2 in HCC cells using CRISPR/Cas9 technology. Furthermore, inhibition of Drp1 using pharmacologic inhibitors (Mdivi-1) or RNA interference (siDNM1L) decreased mito-COX-2/p-Drp1Ser616 interaction-mediated mitochondrial fission, and increased apoptosis in HCC cells treated with platinum drugs. Moreover, inhibiting mito-COX-2 acetylation with the natural phytochemical resveratrol resulted in reducing cell proliferation and mitochondrial fission, occurring through upregulation of mitochondrial deacetylase sirtuin 3 (SIRT3), which, in turn, increased the chemosensitivity of HCC to platinum drugs in vitro and in vivo. Our results suggest that targeting interventions to PINK1-mediated mito-COX-2/p-Drp1Ser616-dependent mitochondrial dynamics increases the chemosensitivity of HCC and might help us to understand how to use the SIRT3-modulated mito-COX-2/p-Drp1Ser616 signaling axis to develop an effective clinical intervention in hepatocarcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...