Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(24): 7034-7041, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29806936

RESUMO

Understanding the mechanism by which oxygen adsorption influences the separation behavior of charge carriers is important in photocatalytic removal of air pollutants. In this study, we performed steady-state surface photovoltage and surface photocurrent spectroscopy combined with an atmosphere control system to determine the effect of oxygen on the charge separation behavior at the surface of anatase TiO2 nanoparticles at ambient temperature. Results showed that photogenerated electrons were movable in N2 atmosphere but were localized in O2 atmosphere. O2 obviously enhanced the stabilization of the localized photogenerated electrons when the surface defects of TiO2 were fully occupied by adsorbed O2. Moreover, O2 adsorption increased the energy demand for exciting electrons from the valence band to localized surface defect states and reduced the density of band tail states. These findings suggest us that the effect of gaseous species on the mobility and stability of charge carriers should be considered to understand the photocatalytic degradation of air pollutants.

2.
Sci Rep ; 6: 19752, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26804982

RESUMO

Protein turnover and homeostasis are regulated by the proteasomal system, which is critical for cell function and viability. Pluripotency of stem cells also relies on normal proteasomal activity that mitigates senescent phenotypes induced by intensive cell replications, as previously demonstrated in human bone marrow stromal cells. In this study, we investigated the role of proteasomes in self-renewal of neural progenitor cells (NPCs). Through both in vivo and in vitro analyses, we found that the expression of proteasomes was progressively decreased during aging. Likewise, proliferation and self-renewal of NPCs were also impaired in aged mice, suggesting that the down-regulation of proteasomes might be responsible for this senescent phenotype. Lowering proteasomal activity by loss-of-function manipulations mimicked the senescence of NPCs both in vitro and in vivo; conversely, enhancing proteasomal activity restored and improved self-renewal in aged NPCs. These results collectively indicate that proteasomes work as a key regulator in promoting self-renewal of NPCs. This potentially provides a promising therapeutic target for age-dependent neurodegenerative diseases.


Assuntos
Autorrenovação Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Envelhecimento , Animais , Biomarcadores , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...