Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Neural Regen Res ; 20(1): 67-81, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767477

RESUMO

Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.

2.
Adv Sci (Weinh) ; : e2308711, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881531

RESUMO

Understanding the liver stem cells (LSCs) holds great promise for new insights into liver diseases and liver regeneration. However, the heterogenicity and plasticity of liver cells have made it controversial. Here, by employing single-cell RNA-sequencing technology, transcriptome features of Krt19+ bile duct lineage cells isolated from Krt19CreERT; Rosa26R-GFP reporter mouse livers are examined. Distinct biliary epithelial cells which include adult LSCs, as well as their downstream hepatocytes and cholangiocytes are identified. Importantly, a novel cell surface LSCs marker, CD63, as well as CD56, which distinguished active and quiescent LSCs are discovered. Cell expansion and bi-potential differentiation in culture demonstrate the stemness ability of CD63+ cells in vitro. Transplantation and lineage tracing of CD63+ cells confirm their contribution to liver cell mass in vivo upon injury. Moreover, CD63+CD56+ cells are proved to be activated LSCs with vigorous proliferation ability. Further studies confirm that CD63+CD56- quiescent LSCs express VEGFR2 and FGFR1, and they can be activated to proliferation and differentiation through combination of growth factors: VEGF-A and bFGF. These findings define an authentic adult liver stem cells compartment, make a further understanding of fate regulation on LSCs, and highlight its contribution to liver during pathophysiologic processes.

3.
Heliyon ; 10(10): e30968, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826705

RESUMO

Background: Efficiently increasing the production of clinical-grade mesenchymal stem cells (MSCs) is crucial for clinical applications. Challenges with the current planar culture methods include scalability issues, labour intensity, concerns related to cell senescence, and heterogeneous responses. This study aimed to establish a large-scale production system for MSC generation. In addition, a comparative analysis of the biological differences between MSCs cultured under various conditions was conducted. Methods and materials: We developed a GMP-grade three-dimensional hypoxic large-scale production (TDHLSP) system for MSCs using self-fabricated glass microcarriers and a multifunctional bioreactor. Different parameters, including cell viability, cell diameter, immunophenotype, morphology, karyotype, and tumourigenicity were assessed in MSCs cultured using different methods. Single-cell RNA sequencing (scRNA-seq) revealed pathways and genes associated with the enhanced functionality of MSCs cultured in three dimensions under hypoxic conditions (3D_Hypo MSCs). Moreover, CD142 knockdown in 3D_Hypo MSCs confirmed its in vitro functions. Results: Inoculating 2 × 108 MSCs into a 2.6 L bioreactor in the TDHLSP system resulted in a final scale of 4.6 × 109 3D_Hypo MSCs by day 10. The 3D_Hypo MSCs retained characteristics of the 2D MSCs, demonstrating their genomic stability and non-tumourigenicity. Interestingly, the subpopulations of 3D_Hypo MSCs exhibited a more uniform distribution and a closer relationship than those of 2D MSCs. The heterogeneity of MSCs was strongly correlated with 'cell cycle' and 'stroma/mesenchyme', with 3D_Hypo MSCs expressing higher levels of activated stroma genes. Compared to 2D MSCs, 3D_Hypo MSCs demonstrated enhanced capabilities in blood vessel formation, TGF-ß1 secretion, and inhibition of BV2 proliferation, with maintenance of Senescence-Associated ß-Galactosidase (SA-ß-gal) negativity. However, the enhanced functions of 3D_Hypo MSCs decreased upon the downregulation of CD142 expression. Conclusion: The TDHLSP system led to a high overall production of MSCs and promoted uniform distribution of MSC clusters. This cultivation method also enhanced key cellular properties, such as angiogenesis, immunosuppression, and anti-aging. These functionally improved and uniform MSC subpopulations provide a solid basis for the clinical application of stem cell therapies.

4.
Front Immunol ; 15: 1363517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562923

RESUMO

Background: Treatment of heart failure post myocardial infarction (post-MI HF) with mesenchymal stem/stromal cells (MSCs) holds great promise. Nevertheless, 2-dimensional (2D) GMP-grade MSCs from different labs and donor sources have different therapeutic efficacy and still in a low yield. Therefore, it is crucial to increase the production and find novel ways to assess the therapeutic efficacy of MSCs. Materials and methods: hUC-MSCs were cultured in 3-dimensional (3D) expansion system for obtaining enough cells for clinical use, named as 3D MSCs. A post-MI HF mouse model was employed to conduct in vivo and in vitro experiments. Single-cell and bulk RNA-seq analyses were performed on 3D MSCs. A total of 125 combination algorithms were leveraged to screen for core ligand genes. Shinyapp and shinycell workflows were used for deploying web-server. Result: 3D GMP-grade MSCs can significantly and stably reduce the extent of post-MI HF. To understand the stable potential cardioprotective mechanism, scRNA-seq revealed the heterogeneity and division-of-labor mode of 3D MSCs at the cellular level. Specifically, scissor phenotypic analysis identified a reported wound-healing CD142+ MSCs subpopulation that is also associated with cardiac protection ability and CD142- MSCs that is in proliferative state, contributing to the cardioprotective function and self-renewal, respectively. Differential expression analysis was conducted on CD142+ MSCs and CD142- MSCs and the differentially expressed ligand-related model was achieved by employing 125 combination algorithms. The present study developed a machine learning predictive model based on 13 ligands. Further analysis using CellChat demonstrated that CD142+ MSCs have a stronger secretion capacity compared to CD142- MSCs and Flow cytometry sorting of the CD142+ MSCs and qRT-PCR validation confirmed the significant upregulation of these 13 ligand factors in CD142+ MSCs. Conclusion: Clinical GMP-grade 3D MSCs could serve as a stable cardioprotective cell product. Using scissor analysis on scRNA-seq data, we have clarified the potential functional and proliferative subpopulation, which cooperatively contributed to self-renewal and functional maintenance for 3D MSCs, named as "division of labor" mode of MSCs. Moreover, a ligand model was robustly developed for predicting the secretory efficacy of MSCs. A user-friendly web-server and a predictive model were constructed and available (https://wangxc.shinyapps.io/3D_MSCs/).


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Animais , Ligantes , Infarto do Miocárdio/genética , Coração , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Células Estromais
6.
Mol Ther ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582962

RESUMO

Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.

7.
Angew Chem Int Ed Engl ; 63(18): e202401428, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38470429

RESUMO

Poly(vinylidene fluoride) (PVDF)-based polymer electro-lytes are attracting increasing attention for high-voltage solid-state lithium metal batteries because of their high room temperature ionic conductivity, adequate mechanical strength and good thermal stability. However, the presence of highly reactive residual solvents, such as N, N-dimethylformamide (DMF), severely jeopardizes the long-term cycling stability. Herein, we propose a solvation-tailoring strategy to confine residual solvent molecules by introducing low-cost 3 Šzeolite molecular sieves as fillers. The strong interaction between DMF and the molecular sieve weakens the ability of DMF to participate in the solvation of Li+, leading to more anions being involved in solvation. Benefiting from the tailored anion-rich coordination environment, the interfacial side reactions with the lithium anode and high-voltage NCM811 cathode are effectively suppressed. As a result, the solid-state Li||Li symmetrical cells demonstrates ultra-stable cycling over 5100 h at 0.1 mA cm-2, and the Li||NCM811 full cells achieve excellent cycling stability for more than 1130 and 250 cycles under the charging cut-off voltages of 4.3 V and 4.5 V, respectively. Our work is an innovative exploration to address the negative effects of residual DMF in PVDF-based solid-state electrolytes and highlights the importance of modulating the solvation structures in solid-state polymer electrolytes.

8.
Angew Chem Int Ed Engl ; 63(11): e202317957, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38270335

RESUMO

Weak adsorption of gas reactants and strong binding of intermediates present a significant challenge for most transition metal oxides, particularly in the realm of CO2 photoreduction. Herein, we demonstrate that the adsorption can be fine-tuned by phase engineering of oxide catalysts. An oxygen vacancy mediated topological phase transition in Ni-Co oxide nanowires, supported on a hierarchical graphene aerogel (GA), is observed from a spinel phase to a rock-salt phase. Such in situ phase transition empowers the Ni-Co oxide catalyst with a strong internal electric field and the attainment of abundant oxygen vacancies. Among a series of catalysts, the in situ transformed spinel/rock-salt heterojunction supported on GA stands out for an exceptional photocatalytic CO2 reduction activity and selectivity, yielding an impressive CO production rate of 12.5 mmol g-1 h-1 and high selectivity of 96.5 %. This remarkable performance is a result of the robust interfacial coupling between two topological phases that optimizes the electronic structures through directional charge transfer across interfaces. The phase transition process induces more Co2+ in octahedral site, which can effectively enhance the Co-O covalency. This synergistic effect balances the surface activation of CO2 molecules and desorption of reaction intermediates, thereby lowering the energetic barrier of the rate-limiting step.

9.
Cell Prolif ; 57(3): e13554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37767639

RESUMO

'General requirements for the production of extracellular vesicles derived from human stem cells' is the first guideline for stem cells derived extracellular vesicles in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the general requirements, process requirements, packaging and labelling requirements and storage requirements for preparing extracellular vesicles derived from human stem cells, which is applicable to the research and production of extracellular vesicles derived from stem cells. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardisation of extracellular vesicles derived from human stem cells.


Assuntos
Vesículas Extracelulares , Células-Tronco , Humanos , China
10.
Clin Transl Med ; 13(11): e1465, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37997519

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with major challenges in both prevention and therapy. Metformin, adenosine monophosphate-activated protein kinase (AMPK) activator, has been suggested to reduce the incidence of HCC when used for patients with diabetes in preclinical and clinical studies. However, the possible effects of metformin and their mechanisms of action in non-diabetic HCC have not been adequately investigated. METHODS: Fah-/-  mice were used to construct a liver-injury-induced non-diabetic HCC model for exploring hepatocarcinogenesis and therapeutic potential of metformin. Changes in relevant tumour and biochemical indicators were measured. Bulk and single-cell RNA-sequencing analyses were performed to validate the crucial role of proinflammatory/pro-tumour CD8+ T cells. In vitro and in vivo experiments were performed to confirm Cyp26a1-related antitumour mechanisms of metformin. RESULTS: RNA-sequencing analysis showed that chronic liver injury led to significant changes in AMPK-, glucose- and retinol metabolism-related pathways in Fah-/- mice. Metformin prevented the formation of non-diabetic HCC in Fah-/- mice with chronic liver injury. Cyp26a1 ddexpression in hepatocytes was significantly suppressed after metformin treatment. Moreover, downregulation of Cyp26a1 occurred in conjunction with increased levels of all-trans-retinoic acid (atRA), which is involved in the activation of metformin-suppressed hepatocarcinogenesis in Fah-/- mice. In contrast, both CD8+  T-cell infiltration and proinflammatory/pro-tumour cytokines in the liver were significantly upregulated in Fah-/- mice during chronic liver injury, which was notably reversed by either metformin or atRA treatment. Regarding mechanisms, metformin regulated the decrease in Cyp26a1 enzyme expression and increased atRA expression via the AMPK/STAT3/Gadd45ß/JNK/c-Jun pathway. CONCLUSIONS: Metformin inhibits non-diabetic HCC by upregulating atRA levels and downregulating CD8+ T cells. This is the first reporting that the traditional drug metformin regulates the metabolite atRA via the Cyp26a1-involved pathway. The present study provides a potential application of metformin and atRA in non-diabetic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Regulação para Baixo , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Tretinoína/uso terapêutico , Carcinogênese , RNA
11.
Adv Sci (Weinh) ; 10(33): e2301639, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870182

RESUMO

Stem cells play critical roles in cell therapies and tissue engineering for nerve repair. However, achieving effective delivery of high cell density remains a challenge. Here, a novel cell delivery platform termed the hyper expansion scaffold (HES) is developed to enable high cell loading. HES facilitated self-promoted and efficient cell absorption via a dual driving force model. In vitro tests revealed that the HES rapidly expanded 80-fold in size upon absorbing 2.6 million human amniotic epithelial stem cells (hAESCs) within 2 min, representing over a 400% increase in loading capacity versus controls. This enhanced uptake benefited from macroscopic swelling forces as well as microscale capillary action. In spinal cord injury (SCI) rats, HES-hAESCs promoted functional recovery and axonal projection by reducing neuroinflammation and improving the neurotrophic microenvironment surrounding the lesions. In summary, the dual driving forces model provides a new rationale for engineering hydrogel scaffolds to facilitate self-promoted cell absorption. The HES platform demonstrates great potential as a powerful and efficient vehicle for delivering high densities of hAESCs to promote clinical treatment and repair of SCI.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Ratos , Animais , Humanos , Alicerces Teciduais , Traumatismos da Medula Espinal/terapia , Engenharia Tecidual , Impressão Tridimensional
12.
Hepatol Int ; 17(6): 1368-1377, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775724

RESUMO

BACKGROUND AND AIMS: Recompensation between patients with ascites and bleeding was unknown in treatment-naïve HBV-related decompensated cirrhosis. METHODS: In this retrospective multi-center study, treatment-naïve HBV-related decompensated patients were enrolled at first decompensating event of ascites and/or variceal bleeding. Further complications and clinical characteristics were collected using standard case report form every 6 months to year-5 of antiviral treatment. Recompensation was defined as maintaining free of decompensation for one year and achieving liver function within Child-Pugh A and/or MELD < 10. RESULTS: Totally, 170 (170/298, 57.0%) patients in ascites group of 298 (298/383, 77.8%) treatment-naïve decompensated patients and 33 (33/85, 38.8%) in bleeding group of 85 (85/383, 22.2%) patients, achieved recompensation. Ascites group had higher 5-year rate of recompensation than bleeding group (63.3% vs. 46.5%, p = 0.012), respectively. Patients achieving recompensation in ascites group maintained lower rate of second decompensation than these in bleeding group (at year-5: 26.7% vs. 43.3%, p = 0.032). Specifically, recompensated patients in ascites group had predominantly 5-year rate of further ascites (24.0%) and lower rate of further bleeding (6.0%), which differed from the pattern of these in bleeding group, with lower rate of further ascites (16.0%, p = 0.599) and significantly higher rate of further bleeding (33.9%, p < 0.001). Both patients had superior long-term prognosis (death/LT rate at year-5: 0.6% vs. 3.0%, p = 0.196). CONCLUSION: Ascites patients could achieve higher rate of recompensation through antiviral therapy than bleeding patients. Recompensated patients in ascites group had better prognosis in terms of preventing further bleeding.


Assuntos
Carcinoma Hepatocelular , Varizes Esofágicas e Gástricas , Neoplasias Hepáticas , Humanos , Antivirais/uso terapêutico , Ascite/complicações , Carcinoma Hepatocelular/tratamento farmacológico , Varizes Esofágicas e Gástricas/complicações , Varizes Esofágicas e Gástricas/terapia , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/terapia , Vírus da Hepatite B , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Estudos Retrospectivos
15.
NPJ Regen Med ; 8(1): 40, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528116

RESUMO

A network of co-hepato/pancreatic stem/progenitors exists in pigs and humans in Brunner's Glands in the submucosa of the duodenum, in peribiliary glands (PBGs) of intrahepatic and extrahepatic biliary trees, and in pancreatic duct glands (PDGs) of intrapancreatic biliary trees, collectively supporting hepatic and pancreatic regeneration postnatally. The network is found in humans postnatally throughout life and, so far, has been demonstrated in pigs postnatally at least through to young adulthood. These stem/progenitors in vivo in pigs are in highest numbers in Brunner's Glands and in PDGs nearest the duodenum, and in humans are in Brunner's Glands and in PBGs in the hepato/pancreatic common duct, a duct missing postnatally in pigs. Elsewhere in PDGs in pigs and in all PDGs in humans are only committed unipotent or bipotent progenitors. Stem/progenitors have genetic signatures in liver/pancreas-related RNA-seq data based on correlation, hierarchical clustering, differential gene expression and principal component analyses (PCA). Gene expression includes representative traits of pluripotency genes (SOX2, OCT4), endodermal transcription factors (e.g. SOX9, SOX17, PDX1), other stem cell traits (e.g. NCAM, CD44, sodium iodide symporter or NIS), and proliferation biomarkers (Ki67). Hepato/pancreatic multipotentiality was demonstrated by the stem/progenitors' responses under distinct ex vivo conditions or in vivo when patch grafted as organoids onto the liver versus the pancreas. Therefore, pigs are logical hosts for translational/preclinical studies for cell therapies with these stem/progenitors for hepatic and pancreatic dysfunctions.

16.
Matrix Biol ; 121: 194-216, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402431

RESUMO

Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.


Assuntos
Carcinoma , Sulfatos , Criança , Humanos , Comunicação Parácrina , Heparitina Sulfato/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo
17.
Front Med ; 17(3): 432-457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37402953

RESUMO

The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.


Assuntos
Hepatopatias , Fígado , Humanos , Fígado/cirurgia , Hepatócitos/metabolismo , Hepatócitos/transplante , Células-Tronco/metabolismo , Hepatopatias/cirurgia
18.
J Diabetes ; 15(8): 640-648, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37221966

RESUMO

BACKGROUND AND AIM: Follicle-stimulating hormone (FSH) was negatively associated with nonalcoholic fatty liver disease (NAFLD) in women older than 55 years old. People with obesity and diabetes had higher prevalence of NAFLD. Thus, we aimed to explore the association between FSH and NAFLD in postmenopausal women with type 2 diabetes mellitus (T2DM). METHODS: A total of 583 postmenopausal women with T2DM with an average age of 60.22 ± 6.49 were recruited in this cross-sectional study through January 2017 to May 2021. Anthropological data, biochemical indexes, and abdominal ultrasound results were retrospectively collected. Abdominal ultrasound was used to diagnose NAFLD. FSH was measured by enzymatic immunochemiluminescence and divided into tertiles for further analysis. The logistic regression was used to assess the association of FSH with prevalent NAFLD. Likelihood ratio tests were used to assess the interactions between groups. RESULTS: A total of 332 (56.94%) postmenopausal women had NAFLD. Compared with postmenopausal women in the lowest tertile of FSH, postmenopausal women in the highest tertile of FSH had lower prevalence of NAFLD (p < .01). After adjusting for age, diabetes duration, metabolism-related indicators, and other sex-related hormones, FSH was inversely associated with NAFLD (odds ratio: 0.411, 95% confidence intervals: 0.260-0.651, p < .001). In subgroup analysis, there were no significant interactions of FSH with strata of metabolic factors on the association of NAFLD. CONCLUSION: FSH was negatively and independently associated with NAFLD in postmenopausal women with type 2 diabetes mellitus. It might be a potential index for screening and identifying individuals with high risk of NAFLD in postmenopausal women.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hormônio Foliculoestimulante , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Pós-Menopausa , Fatores de Risco , Estudos Transversais , Estudos Retrospectivos
19.
Stem Cells Int ; 2023: 6256115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970596

RESUMO

Overactive inflammatory responses contribute to progressive cardiac dysfunction after myocardial infarction (MI). Mesenchymal stem cell (MSC) has generated significant interest as potent immune modulators that can regulate excessive immune responses. We hypothesized that intravenous (iv) administration of human umbilical cord-derived MSC (HucMSC) exerts systemic and local anti-inflammation effects, leading to improved heart function after MI. In murine MI models, we confirmed that single iv administration of HucMSC (30 × 104) improved cardiac performance and prevented adverse remodeling after MI. A small proportion of HucMSC is trafficked to the heart, preferentially in the infarcted region. HucMSC administration increased CD3+ T cell proportion in the periphery while decreased T cell proportion in both infarcted heart and mediastinal lymph nodes (med-LN) at 7-day post-MI, indicating a systematic and local T cell interchange mediated by HucMSC. The inhibitory effects of HucMSC on T cell infiltration in the infarcted heart and med-LN sustained to 21-day post-MI. Our findings suggested that iv administration of HucMSC fostered systemic and local immunomodulatory effects that contributed to the improvement of cardiac performance after MI.

20.
Front Cell Dev Biol ; 11: 998666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824368

RESUMO

Long-term in vitro culture of human mesenchymal stem cells (MSCs) leads to cell lifespan shortening and growth stagnation due to cell senescence. Here, using sequencing data generated in the public domain, we have established a specific regulatory network of "transcription factor (TF)-microRNA (miRNA)-Target" to provide key molecules for evaluating the passage-dependent replicative senescence of mesenchymal stem cells for the quality control and status evaluation of mesenchymal stem cells prepared by different procedures. Short time-series expression miner (STEM) analysis was performed on the RNA-seq and miRNA-seq databases of mesenchymal stem cells from various passages to reveal the dynamic passage-related changes of miRNAs and mRNAs. Potential miRNA targets were predicted using seven miRNA target prediction databases, including TargetScan, miRTarBase, miRDB, miRWalk, RNA22, RNAinter, and TargetMiner. Then use the TransmiR v2.0 database to obtain experimental-supported transcription factor for regulating the selected miRNA. More than ten sequencing data related to mesenchymal stem cells or mesenchymal stem cells reprogramming were used to validate key miRNAs and mRNAs. And gene set variation analysis (GSVA) was performed to calculate the passage-dependent signature. The results showed that during the passage of mesenchymal stem cells, a total of 29 miRNAs were gradually downregulated and 210 mRNA were gradually upregulated. Enrichment analysis showed that the 29 miRNAs acted as multipotent regulatory factors of stem cells and participated in a variety of signaling pathways, including TGF-beta, HIPPO and oxygen related pathways. 210 mRNAs were involved in cell senescence. According to the target prediction results, the targets of these key miRNAs and mRNAs intersect to form a regulatory network of "TF-miRNA-Target" related to replicative senescence of cultured mesenchymal stem cells, across 35 transcription factor, 7 miRNAs (has-mir-454-3p, has-mir-196b-5p, has-mir-130b-5p, has-mir-1271-5p, has-let-7i-5p, has-let-7a-5p, and has-let-7b-5p) and 7 predicted targets (PRUNE2, DIO2, CPA4, PRKAA2, DMD, DDAH1, and GATA6). This network was further validated by analyzing datasets from a variety of mesenchymal stem cells subculture and lineage reprogramming studies, as well as qPCR analysis of early passages mesenchymal stem cells versus mesenchymal stem cells with senescence morphologies (SA-ß-Gal+). The "TF-miRNA-Target" regulatory network constructed in this study reveals the functional mechanism of miRNAs in promoting the senescence of MSCs during in vitro expansion and provides indicators for monitoring the quality of functional mesenchymal stem cells during the preparation and clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...