Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 603, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926681

RESUMO

BACKGROUND: Chayote is a high economic crop in the Cucurbitaceae family, playing an important role in food production, disease treatment and the production of degradable materials in industries. Due to the harsh environment, such as high temperature, drought and frost, some chayote resources are gradually disappearing. It is crucial to collect, characterize, and conserve chayote resources. However, the genetic diversity of chayote resources in China has not been studied so far. RESULTS: In this study, we collected 35 individuals of chayote from 14 provinces in China. Subsequently, we found 363,156 SSR motifs from the chayote genome and designed 57 pairs of SSR primers for validation. Out of these, 48 primer pairs successfully amplified bands, with 42 of them showing polymorphism. These 42 primer pairs detected a total of 153 alleles, averaging 3.64 alleles per locus. The polymorphic information content ranged from 0.03 to 0.78, with an average value of 0.41, indicating a high level of polymorphism. Based on the analysis using STRUCTURE, PCoA, and UPGMA methods, the 35 chayote individuals were divided into two major clusters. Through further association analysis, 7 significantly associated SSR markers were identified, including four related to peel color and three related to spine. CONCLUSIONS: These molecular markers will contribute to the analysis of genetic diversity and genetic breeding improvement of chayote in the future.


Assuntos
Variação Genética , Genoma de Planta , Repetições de Microssatélites , Repetições de Microssatélites/genética , China , Marcadores Genéticos , Polimorfismo Genético
2.
BMC Plant Biol ; 23(1): 413, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37674150

RESUMO

BACKGROUND: Chayote is an underutilized species of Cucurbitaceae. It is rich in nutrients such as protein, minerals, phenols and its extracts have anti-cardiovascular and anti-cancer effects, making it a versatile plant for both medicinal and culinary purposes. Although research on its root tuber is limited, they are rich in starch and have a structure similar to that of potatoes, cassava, and sweet potatoes. Therefore, they can serve as potential substitutes for potatoes and offer promising prospects as agricultural and industrial resources. However, the physiological and cellular mechanisms of chayote root tuber formation and development are still unclear. RESULTS: In this study, we observed the growth habit of 'Tuershao' (high yield of root tuber). The results revealed that the tuber enlargement period of 'Tuershao' lasts approximately 120 days, with the early enlargement phase occurring during 0-30 days, rapid enlargement phase during 30-90 days, and maturation phase during 90-120 days. Physiological indicators demonstrated a gradual increase in starch content as the tuber developed. The activities of sucrose synthase (SUS) and invertase (VIN) showed a consistent trend, reaching the highest level in the rapid expansion period, which was the key enzyme affecting tuber expansion. Moreover, the special petal like structure formed by the secondary phloem and secondary xylem of the tuber resulted in its enlargement, facilitating the accumulation of abundant starch within the thin-walled cells of this structure. Principal component analysis further confirmed that starch content, SUS and VIN activities, as well as the concentrations of calcium (Ca), iron (Fe), and selenium (Se), were the major factors influencing tuber development. Moreover, the low temperature environment not only promoted the growth of 'Tuershao' tubers but also enhanced the accumulation of nutritional substances. CONCLUSIONS: These findings contribute to a deeper understanding of the formation and developmental mechanisms of 'Tuershao' tubers, providing valuable guidance for cultivation practices aimed at improving crop yield.


Assuntos
Agricultura , Cucurbitaceae , Cálcio , Temperatura Baixa , Ferro
3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047083

RESUMO

The MADS-box gene plays an important role in plant growth and development. As an important vegetable of Cucurbitaceae, chayote has great edible and medicinal value. So far, there is little molecular research on chayote, and there are no reports on the MADS-box transcription factor of chayote. In this study, the MADS-box gene family of chayote was analyzed for the first time, and a total of 70 MADS-box genes were identified, including 14 type I and 56 type II MICK MADS genes. They were randomly distributed on 13 chromosomes except for chromosome 11. The light response element, hormone response element and abiotic stress response element were found in the promoter region of 70 MADS genes, indicating that the MADS gene can regulate the growth and development of chayote, resist abiotic stress, and participate in hormone response; GO and KEGG enrichment analysis also found that SeMADS genes were mainly enriched in biological regulation and signal regulation, which further proved the important role of MADS-box gene in plant growth and development. The results of collinearity showed that segmental duplication was the main driving force of MADS gene expansion in chayote. RNA-seq showed that the expression levels of SeMADS06, SeMADS13, SeMADS26, SeMADS28, SeMADS36 and SeMADS37 gradually increased with the growth of chayote, indicating that these genes may be related to the development of root tubers of 'Tuershao'. The gene expression patterns showed that 12 SeMADS genes were specifically expressed in the male flower in 'Tuershao' and chayote. In addition, SeMADS03 and SeMADS52 may be involved in regulating the maturation of male flowers of 'Tuershao' and chayote. SeMADS21 may be the crucial gene in the development stage of the female flower of 'Tuershao'. This study laid a theoretical foundation for the further study of the function of the MADS gene in chayote in the future.


Assuntos
Cucurbitaceae , Proteínas de Domínio MADS , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Genoma de Planta , Flores/metabolismo , Fatores de Transcrição/metabolismo , Cucurbitaceae/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835148

RESUMO

In recent times, the excessive accumulation of nitrate has been one of the main reasons for the secondary salinization of greenhouse soils. Light plays a key role in a plant's growth, development, and response to stress. A low-red to far-red (R:FR) light ratio could enhance plant salinity tolerance, but the mechanism at a molecular level is unclear. Thus, we analyzed the transcriptome responses of tomato seedlings to calcium nitrate stress under either a low R:FR ratio (0.7) or normal light conditions. Under calcium nitrate stress, a low R:FR ratio enhanced both the antioxidant defense system and the rapid physiological accumulation of proline in tomato leaves, which promoted plant adaptability. Using weighted gene co-expression network analysis (WGCNA), three modules including 368 differentially expressed genes (DEGs) were determined to be significantly associated with these plant traits. Functional annotations showed that the responses of these DEGs to a low R:FR ratio under excessive nitrate stress were enriched in the areas of hormone signal transduction, amino acid biosynthesis, sulfide metabolism, and oxidoreductase activity. Furthermore, we identified important novel hub genes encoding certain proteins, including FBNs, SULTRs, and GATA-like transcription factor, which may play a vital role in low R:FR light-induced salt responses. These findings offer a new perspective on the mechanisms and environmental implications behind low R:FR ratio light-modulated tomato saline tolerance.


Assuntos
Plântula , Solanum lycopersicum , Plântula/metabolismo , Nitratos/metabolismo , Transcriptoma , Luz , Regulação da Expressão Gênica de Plantas
5.
Front Plant Sci ; 14: 1326218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293623

RESUMO

Light is one of the important environmental factors affecting the growth and development of facility vegetables. In this experiment, we investigated the effects of different light intensities on the growth, nutritional quality and flavonoid accumulation of celery under hydroponic and full LED light conditions. Four light intensities of 40, 100, 200, or 300 µmol·m-2·s-1 were set up in the experiment, and three harvest periods were set up on the basis of different light intensities, which were 15, 30, and 45 d after treatment (labeled as S1, S2, and S3, respectively). The results showed that the plant height and aboveground biomass of celery increased with the increase of light intensity, and the light intensity of 200 µmol·m-2·s-1 was beneficial to increase the contents of chlorophyll, carotenoids, total phenols, vitamin C, cellulose, total flavones and apigenin in celery. During the S1-S3 period, the activities of PAL, CHS, CHI and ANS increased gradually under 200 and 300 µmol·m-2·s-1 light intensity treatments, and the activities of FNS and CHS enzymes were the highest under 200 µmol·m-2·s-1 light intensity treatment. The expression and ANS activity of Ag3GT, a key gene for anthocyanin synthesis, reached the maximum value at 300 µmol·m-2·s-1, and the expression level and FNS activity of AgFNS, a key gene for apigenin synthesis, reached a maximum value at 200 µmol·m-2·s-1. In general, the anthocyanin content was the highest at 300 µmol·m-2·s-1, and the apigenin content was the highest at 200 µmol·m-2·s-1. In conclusion, light intensity of 200 µmol·m-2·s-1 treatment was more favorable for celery growth and nutrient synthesis.

6.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742832

RESUMO

Chayote (Sechium edule) produces edible tubers with high starch content after 1 year of growth but the mechanism of chayote tuberization remains unknown. 'Tuershao', a chayote cultivar lacking edible fruits but showing higher tuber yield than traditional chayote cultivars, was used to study tuber formation through integrative analysis of the metabolome and transcriptome profiles at three tuber-growth stages. Starch biosynthesis- and galactose metabolism-related genes and metabolites were significantly upregulated during tuber bulking, whereas genes encoding sugars will eventually be exported transporter (SWEET) and sugar transporter (SUT) were highly expressed during tuber formation. Auxin precursor (indole-3-acetamide) and ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, were upregulated, suggesting that both hormones play pivotal roles in tuber development and maturation. Our data revealed a similar tuber-formation signaling pathway in chayote as in potatoes, including complexes BEL1/KNOX and SP6A/14-3-3/FDL. Down-regulation of the BEL1/KNOX complex and upregulation of 14-3-3 protein implied that these two complexes might have distinct functions in tuber formation. Finally, gene expression and microscopic analysis indicated active cell division during the initial stages of tuber formation. Altogether, the integration of transcriptome and metabolome analyses unraveled an overall molecular network of chayote tuberization that might facilitate its utilization.


Assuntos
Cucurbitaceae , Solanum tuberosum , Cucurbitaceae/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Amido/metabolismo , Transcriptoma
7.
Environ Res ; 203: 111879, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390716

RESUMO

To mitigate greenhouse gas (GHG) emissions, different strategies have been proposed, including application of dolomite, crop straw and biochar, thus contributing to cope with the increasing global warming affecting the planet. In the current study, pristine wheat straw biochar (WBC) and magnesium (MgCl2.6H2O) modified wheat straw biochar (MWBC) were used. Treatments included control (CK), two WBC dosages (1% and 2.5%), and two MWBC doses (1% and 2.5%). After 90 days of incubation, WBC and MWBC improved the soil physiochemical properties, being more pronounced with increasing rates of biochar. MWBC2.5 significantly decreased microbial biomass carbon (MBC), while microbial biomass nitrogen (MBN) increased when both biochar materials (WBC1 and MWBC1) were applied at low rate. Compared to control soil, Urease and Alkaline phosphatase activities increased with the increasing rate of WBC and MWBC. The activities of dehydrogenase and ß-glucosidase decreased with the WBC and MWBC application, compared to CK. The fluxes of all the three GHGs evaluated (CO2, CH4 and N2O) decreased with time for both biochar amendments, while cumulative emission of CO2 increased by 58% and 45% for WBC, and by 54% and 41% for MWBC, as compared to CK. The N2O cumulative emissions decreased by 18 and 34% for WBC, and by 25 and 41% for MWBC, compared to CK, whereas cumulative methane emission showed non-significant differences among all treatments. These findings indicate that Mg-modified wheat straw biochar would be an appropriate management strategy aiding to reduce GHG emissions and improving the physiochemical properties of affected soils, and specifically of the red dry land soil investigated in the current work.


Assuntos
Gases de Efeito Estufa , Agricultura , Carvão Vegetal , Magnésio , Óxido Nitroso , Solo , Triticum
8.
Sci Rep ; 11(1): 13600, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193957

RESUMO

Phedimus aizoon L. is a drought-resistant Chinese herbal medicine and vegetable. However, its drought tolerant limit and the mechanism of drought tolerance are unknown, which restricts the promotion of water-saving cultivation of Phedimus aizoon L. in arid areas. To solve the above problem, we carried out a 30-day-long drought stress experiment in pots that presented different soil water contents and were divided into four groups: control check, 75-80% of the maximum water-holding capacity (MWHC); mild drought, 55-60%; moderate drought, 40-45%; and severe drought, 20-25%. The dynamic changes in both plant physiological indexes from 10 to 30 days and leaf anatomical structure on the 30th day of stress were recorded. The results show that Phedimus aizoon L. grew normally under mild drought stress for 30 days, but the growth of the plants became inhibited after 20 days of severe drought and after 30 days of moderate drought. At the same time, Phedimus aizoon L. physiologically responded to cope with drought stress: the growth of the root system accelerated, the waxy layer of the leaves thickened, and the dark reactions of the plants transformed from those of the C3 cycle to CAM. The activity of antioxidant enzymes (SOD, POD and CAT) continuously increased to alleviate the damage caused by drought stress. To ensure the relative stability of the osmotic potential, the contents of osmoregulatory substances such as proline, soluble sugars, soluble protein and trehalose increased correspondingly. Although Phedimus aizoon L. has strong drought stress resistance, our experimental results show that the soil available water content should not be less than 27% during cultivation.

9.
Ecotoxicol Environ Saf ; 222: 112473, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224970

RESUMO

Soil cadmium (Cd) contamination severely threatens human health. Therefore, screening and breeding low-Cd absorption cultivars of cherry tomato (Solanum lycopersicum L.) is essential to restrict human Cd intake. In this study, a hydroponic experiment was conducted to perform a comparative transcriptome analysis of the leaves of two cherry tomato cultivars with different Cd contents under different Cd stress (0, 10, and 50 µM), for the purpose of exploring the differences in the transcriptional responses to Cd stress between the two cultivars. Our results revealed that the Cd content in the leaves of HLZ (Hanluzhe; a low-Cd accumulation cultivar) was significantly lower than that in the leaves of LFC (Lvfeicui; a high-Cd accumulation cultivar). Transcriptome analysis showed that the different expression genes (DEGs) were mainly involved in plant hormone signal transduction, antioxidant enzymes, cell wall biosynthesis, and metal transportation. In the LFC leaves, DEGs in the IAA signal transduction and antioxidant enzymes exhibited higher transcription levels. However, the DEGs in the ETH signal transduction demonstrated a lower transcription level compared to that of HLZ. Over-expressed genes in the pectin biosynthesis and pectin methylesterase (PME) of the LFC leaves might result in the trapping of Cd by increased levels of low-methylated pectin around the cell wall. Furthermore, Cd transporter genes, such as HMA5, NRAMP6, CAX3, ABCC3, and PDR1, were up-regulated in the HLZ leaves, indicating that the HLZ cultivar comprised an active Cd transport capacity from apoplast to vacuolar. This may contribute to the low Cd concentration observed in the HLZ leaves. Overall, our study provides a molecular basis for tomato screening and breeding.


Assuntos
Poluentes do Solo , Solanum lycopersicum , Cádmio/análise , Cádmio/toxicidade , Perfilação da Expressão Gênica , Humanos , Solanum lycopersicum/genética , Melhoramento Vegetal , Raízes de Plantas/química , Raízes de Plantas/genética , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Transcriptoma
10.
Environ Sci Pollut Res Int ; 25(30): 30671-30679, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30178407

RESUMO

The effects of application of straw derived from cadmium (Cd) accumulator plants (Siegesbeckia orientalis, Conyza canadensis, Eclipta prostrata, and Solanum photeinocarpum) on growth and Cd accumulation of lettuce plants grown under Cd exposure were studied. Treatment with straw of the four Cd-accumulator species promoted growth, photosynthesis, and soluble protein contents and enhanced the activities of peroxidase in leaves of lettuce seedlings. The biomass of shoot of lettuce from high to low in turn is the treatment of C. canadensis straw > S. photeinocarpum straw > S. orientalis > E. prostrata > Control. The Cd content in edible parts (shoots) of the lettuce plants was significantly decreased in the presence of straw from the Cd-accumulator species, except the presence of the straw of E. prostrata. And, the greatest reduction in Cd content in shoots was 27.09% in the S. photeinocarpum straw treatment compared with that of the control. Therefore, application of straw of S. orientalis, C. canadensis, and S. photeinocarpum can promote the growth of lettuce seedlings, and decrease their Cd accumulation, when grown in Cd-contaminated soil, which is beneficial for production of lettuce safe for human consumption.


Assuntos
Cádmio/metabolismo , Lactuca/metabolismo , Fotossíntese , Caules de Planta/química , Asteraceae/química , Asteraceae/metabolismo , Biomassa , Cádmio/análise , Produção Agrícola , Lactuca/química , Lactuca/enzimologia , Lactuca/crescimento & desenvolvimento , Peroxidase/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Plântula/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solanum/química , Solanum/metabolismo
11.
Int J Phytoremediation ; 20(4): 295-300, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29053350

RESUMO

Phytoremediation technology has become one of the main techniques for remediating soils polluted by heavy metals because it does not damage the environment, but heavy metal-tolerant plants have the disadvantages of low biomass and slow growth. A pot experiment was conducted to study the effects of melatonin (Mel) on growth and cadmium (Cd) accumulation in the Cd accumulator Malachium aquaticum and hyperaccumulator Galinsoga parviflora by spraying different concentrations of Mel on them. The results showed that shoot biomass, photosynthetic pigment content and antioxidant enzyme activity were increased in both species after Mel was sprayed on their leaves. Mel reduced the Cd content in shoots of M. aquaticum and increased it in those of G. parviflora. In general, Cd accumulation was greatest in M. aquaticum when Mel was 200 µmol L-1 (120.71 µg plant-1, increased by 15.97% than control) and in G. parviflora when Mel was 100 µmol L-1 (132.40 µg plant-1, increased by 68.30% than control). Our results suggest it is feasible to improve the remediation efficiency of lightly Cd-contaminated soil by spraying G. parviflora with100 µmol L-1 Mel.


Assuntos
Melatonina , Poluentes do Solo/análise , Biodegradação Ambiental , Cádmio/análise , Raízes de Plantas
12.
Ying Yong Sheng Tai Xue Bao ; 26(5): 1359-64, 2015 May.
Artigo em Chinês | MEDLINE | ID: mdl-26571652

RESUMO

Temperature sensitive periods and growth characteristics of endive under different temperatures were investigated in greenhouse by weekly reciprocal transferring experiment condition between warm (17 °C) and cold (average 10.5 °C) environment. The results indicated that difference in growth rate of endive was significant in cold and warm environments. There was no temperature sensitive period in endive, and it could feel outside temperature, thus, conducted vernalization induction in setting temperature range (2-17 °C). Meanwhile, low temperature favored the flower bud differentiation. Endives all completed flower bud differentiation and bloting either in warm or in cold environment. It took 24 days to complete flower bud differentiation in cold environment and 60 days in warm environment, and bolting was 7 days later in warm environment than in cold environment. From seeding to bolting, it took 111 days in warm environment and 104 days in cold environment, respectively. After flowering induction, the seeding bolting rate from warm environment to cold environment was obviously higher than that from cold to warm environment and higher temperature led to faster bolting in this period.


Assuntos
Asteraceae/fisiologia , Temperatura Baixa , Flores/fisiologia , Temperatura
13.
Ying Yong Sheng Tai Xue Bao ; 25(12): 3563-72, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25876409

RESUMO

The effects of grafting on physiological characters of melon (Cucumis melo) seedlings under copper stress were investigated with Pumpkin Jingxinzhen No. 3 as stock and oriental melon IVF09 as scion. The results showed that the physiological characters of melon seedlings were inhibited significantly under copper stress. Compared with self-rooted seedlings, the biomass, the contents of photosynthetic pigment, glucose and fructose, the photosynthetic parameters, the activities of sucrose phosphate synthase, neutral invertase and acid invertase in the leaves of the grafted seedlings were increased significantly. The uptake of nutrients was improved with the contents of K, P, Na increased and the content of Cu decreased. When the concentration of Cu2+ stress was 800 micromol L(-1), the contents of Cu in the leaves and roots of the grafted seedlings were decreased by 31.3% and 15.2%, respectively. Endogenous hormone balance of seedlings was improved by grafting. In the grafted seedlings, the content of IAA and peroxidase activity were higher, whereas the contents of ABA, maleicdialdehyde, the activities of superoxide dismutase and catalase were lower than that in the control. It was concluded that the copper stress on the physiological characters of melon seedlings was relieved by grafting which improved the resistance of the grafted seedlings.


Assuntos
Cobre/química , Cucumis melo/fisiologia , Ácido Abscísico/metabolismo , Agricultura/métodos , Biomassa , Catalase/metabolismo , Cucurbita , Malondialdeído/metabolismo , Fotossíntese , Folhas de Planta/enzimologia , Raízes de Plantas , Plântula/fisiologia , Estresse Fisiológico , Superóxido Dismutase/metabolismo , beta-Frutofuranosidase/metabolismo
14.
J Microbiol ; 51(1): 100-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23456717

RESUMO

The plant growth, stem sap flow, Na(+) and Cl(-) content, and the expression of vacuolar Na(+)/H(+) antiporter gene (LeNHX1) in the leaves and roots of tomato under different NaCl stresses (0.5% and 1%) were studied to analyze the effect of arbuscular mycorrhizal fungi (AMF) on Na(+) and Cl(-) accumulation and ion exchange. The results showed that arbuscular mycorrhizal (AM) plant growth and stem sap flow increased and salt tolerance improved, whereas Na(+) and Cl(-) accumulated. Na(+) significantly decreased, and no significant decline was detected in Cl(-) content after AMF inoculation compared with the non-AM plants. The LeNHX1 gene expression was induced in the AM and non-AM plants by NaCl stress. However, AMF did not improve the LeNHX1 level, and low expression was observed in the AM tomato. Hence, the mechanism that reduced the Na(+) damage to tomato induced by AMF has little relation to LeNHX1, which can export Na(+) from the cytosol to the vacuole across the tonoplast.


Assuntos
Regulação da Expressão Gênica de Plantas , Micorrizas/crescimento & desenvolvimento , Pressão Osmótica , Trocadores de Sódio-Hidrogênio/biossíntese , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Cloro/análise , Perfilação da Expressão Gênica , Solanum lycopersicum/química , Solanum lycopersicum/microbiologia , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Sais/toxicidade , Sódio/análise , Trocadores de Sódio-Hidrogênio/genética
15.
Colloids Surf B Biointerfaces ; 59(2): 128-33, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17560092

RESUMO

Salinity toxicity is a worldwide agricultural and eco-environmental problem. Many literatures show that arbuscular mycorrhizal fungi (AMF) can enhance salt tolerance of many plants and some physiological changes occurred in AM symbiosis under salt stress. However, the role of ROS-scavenging enzymes in AM tomato is still unknown in continuous salt stress. This study investigated the effect of Glomus mosseae on tomato growth, cell membrane osmosis and examined the antioxidants (superoxide-dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; peroxidase, POD) responses in roots of mycorrhizal tomato and control under different NaCl stress for 40 days in potted culture. NaCl solution (0, 0.5 and 1%) was added to organic soil in the irrigation water after 45 days inoculated by AMF (Glomus mosseae). (1) AMF inoculation improved tomato growth under salt or saltless condition and reduced cell membrane osmosis, MDA (malonaldehyde) content in salinity. So the salt tolerance of tomato was enhanced by AMF; (2) SOD, APX and POD activity in roots of AM symbiosis were significantly higher than corresponding non-AM plants in salinity or saltless condition. However, CAT activity was transiently induced by AMF and then suppressed to a level similar with non-AM seedlings; (3) higher salinity (1% level) and long stress time suppressed the effect of AMF on SOD, APX, POD and CAT activity; (4) this research suggested that the enhanced salt tolerance in AM symbiosis was mainly related with the elevated SOD, POD and APX activity by AMF which degraded more reactive oxygen species and so alleviated the cell membrane damages under salt stress. Whereas, the elevated SOD, POD and APX activity due to AMF depended on salinity environment.


Assuntos
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Micorrizas/metabolismo , Cloreto de Sódio/toxicidade , Solanum lycopersicum/enzimologia , Solanum lycopersicum/microbiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Condutividade Elétrica , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Osmose , Pressão Osmótica , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA