Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Chin Med ; : 1-21, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752843

RESUMO

Subarachnoid hemorrhage (SAH), a specific subtype of cerebrovascular accident, is characterized by the extravasation of blood into the interstice between the brain and its enveloping delicate tissues. This pathophysiological phenomenon can precipitate an early brain injury (EBI), which is characterized by inflammation and neuronal death. Rutaecarpine (Rut), a flavonoid compound discovered in various plants, has been shown to have protective effects against SAH-induced cerebral insult in rodent models. In our study, we used a rodent SAH model to evaluate the effect of Rut on EBI and investigated the effect of Rut on the inflammatory response and its regulation of SIRT6 expression in vitro. We found that Rut exerts a protective effect on EBI in SAH rats, which is partly due to its ability to inhibit the inflammatory response. Notably, Rut up-regulated Sirtuin 6 (SIRT6) expression, leading to an increase in H3K9 deacetylation and inhibition of nuclear factor-kappa B (NF-[Formula: see text]B) transcriptional activation, thereby mediating the inflammatory response. In addition, further data showed that SIRT6 was proven to mediate the regulation of Rut on the microglial inflammatory response. These findings highlight the importance of SIRT6 in the regulation of inflammation and suggest a potential mechanism for the protective effect of Rut on EBI. In summary, Rut may have the potential to prevent and treat SAH-induced brain injury by interacting with SIRT6. Our findings may provide a new therapeutic strategy for the treatment of SAH-induced EBI.

2.
Sci Total Environ ; 929: 172332, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615776

RESUMO

Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.


Assuntos
Carbono , Inocuidade dos Alimentos , Nanoestruturas , Alimentos Marinhos , Alimentos Marinhos/análise , Inocuidade dos Alimentos/métodos , Nanoestruturas/análise , Carbono/análise , Contaminação de Alimentos/análise
3.
Front Pharmacol ; 15: 1346383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405671

RESUMO

Non-small cell lung cancer (NSCLC) is the most common type of lung tumor; however, we lack effective early detection indicators and therapeutic targets. Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) is vital to initiate protein synthesis, acting as a scaffolding protein for the eukaryotic protein translation initiation factor complex, EIF4F, which regulates protein synthesis together with EIF4A, EIF4E, and other translation initiation factors. However, EIF4G1's function in NSCLC cancer is unclear. Herein, transcriptome sequencing showed that knockdown of EIF4G1 in H1299 NSCLC cells upregulated the expression of various inflammation-related factors. Inflammatory cytokines were also significantly overexpressed in NSCLC tumor tissues, among which CXCL8 (encoding C-X-C motif chemokine ligand 8) showed the most significant changes in both in the transcriptome sequencing data and tumor tissues. We revealed that EIF4G1 regulates the protein level of TNF receptor superfamily member 10a (TNFRSF10A) resulting in activation of the mitogen activated protein kinase (MAPK) and nuclear factor kappa B (NFκB) pathways, which induces CXCL8 secretion, leading to targeted chemotaxis of immune cells. We verified that H1299 cells with EIF4G1 knockdown showed increased chemotaxis compared with the control group and promoted increased chemotaxis of macrophages. These data suggested that EIF4G1 is an important molecule in the inflammatory response of cancer tissues in NSCLC.

4.
J Ethnopharmacol ; 326: 117930, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38373662

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Migraine, a chronic and intricate disorder, manifests as recurrent episodic headaches accompanied by various neurological symptoms. Wuzhuyu Decoction (WZYD) is a traditional Chinese medical formula with promising effects in treating migraines; however, its underlying mechanisms have not yet been clarified. AIM OF STUDY: The study aimed to evaluate WZYD's effectiveness in migraine treatment and investigate the potential mechanism of WZYD's effects on migraine and oxidative stress. MATERIALS AND METHODS: Behavior tests and immunofluorescence assay for the intensity of migraine markers to assess the migraine-relieving effect of WZYD after chronic migraine model induced by nitroglycerin in mice. The impacts of WZYD on oxidative stress-related markers, including reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase 1 (HO1), and NAD (P)H quinone oxidoreductase 1 (NQO1) in brain tissue were examined. In addition, protein expression or mRNA levels of the MZF1/PGK1 were detected using Western blot or PCR, respectively. Finally, the MZF1 overexpression vector was constructed to the higher level of MZF1. The MZF1/PGK1 signaling pathway expression was evaluated by markers of oxidative stress including NRF2 and others in this series of experiments. RESULTS: Through murine model experimentation, we observed that WZYD effectively alleviates migraine symptoms, signifying its therapeutic efficacy. Mechanistically, WZYD emerges as a potent activator of the NRF2, acting as a robust defense against oxidative stress. In vitro investigations demonstrated that WZYD combats oxidative stress and curbs cell apoptosis induced by these detrimental conditions. Furthermore, by suppressing the transcriptional expression of PGK1, an influential player in the NRF2 pathway, WZYD effectively activates NRF2 signaling. Intriguingly, we have identified MZF1 as the mediator orchestrating the regulation of the PGK1/NRF2 pathway by WZYD. CONCLUSION: The study confirms the effectiveness of WZYD in alleviating migraine symptoms. Mechanistically, WZYD activated the NRF2 signaling pathway; moreover, the action of WZYD involved the down-regulation of PGK1 mediated by MZF1, which promoted the activation of the NRF2 pathway. This study advances our understanding of the intricate mechanisms driving WZYD's efficacy, paving the way for novel treatments in migraine management.


Assuntos
Antioxidantes , Transtornos de Enxaqueca , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nitroglicerina , Elementos de Resposta Antioxidante , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/genética
5.
Sci Total Environ ; 921: 171227, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402820

RESUMO

Understanding the assembly mechanisms of microbial communities, particularly comammox Nitrospira, in agroecosystems is crucial for sustainable agriculture. However, the large-scale distribution and assembly processes of comammox Nitrospira in agricultural soils remain largely elusive. We investigated comammox Nitrospira abundance, community structure, and assembly processes in 16 paired upland peanuts and water-logged paddy soils in south China. Higher abundance, richness, and network complexity of comammox Nitrospira were observed in upland soils than in paddy soils, indicating a preference for upland soils over paddy soils among comammox Nitrospira taxa in agricultural environments. Clade A.2.1 and clade A.1 were the predominant comammox Nitrospira taxa in upland and paddy soils, respectively. Soil pH was the most crucial factor shaping comammox Nitrospira community structure. Stochastic processes were found to predominantly drive comammox Nitrospira community assembly in both upland and paddy soils, with deterministic processes playing a more important role in paddy soils than in upland soils. Overall, our findings demonstrate the higher stochasticity of comammox Nitrospira in upland soils than in the adjacent paddy soils, which may have implications for autotrophic nitrification in acidic agricultural soils.


Assuntos
Amônia , Solo , Solo/química , Oxirredução , Bactérias , Nitrificação , Filogenia , Archaea
6.
Phytomedicine ; 125: 155321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237514

RESUMO

BACKGROUND: Traumatic Brain Injury (TBI) poses a considerable public health challenge, resulting in mortality, disability, and economic strain. Dehydroevodiamine (DEDM) is a natural compound derived from a traditional Chinese herbal medicine. Prior studies have substantiated the neuroprotective attributes of this compound in the context of TBI. Nevertheless, a comprehensive comprehension of the exact mechanisms responsible for its neuroprotective effects remains elusive. It is imperative to elucidate the precise intrinsic mechanisms underlying the neuroprotective actions of DEDM. PURPOSE: The aim of this investigation was to elucidate the mechanism underlying DEDM treatment in TBI utilizing both in vivo and in vitro models. Specifically, our focus was on comprehending the impact of DEDM on the Sirtuin1 (SIRT1) / Forkhead box O3 (FOXO3a) / Bcl-2-like protein 11 (Bim) pathway, a pivotal player in TBI-induced cell death attributed to oxidative stress. STUDY DESIGN AND METHODS: We established a TBI mouse model via the weight drop method. Following continuous intraperitoneal administration, we assessed the neurological dysfunction using the Modified Neurological Severity Score (mNSS) and behavioral assay, followed by sample collection. Secondary brain damage in mice was evaluated through Nissl staining, brain water content measurement, Evans blue detection, and Western blot assays. We scrutinized the expression levels of oxidative stress-related indicators and key proteins for apoptosis. The intricate mechanism of DEDM in TBI was further explored through immunofluorescence, Co-immunoprecipitation (Co-IP) assays, real-time quantitative PCR (RT-qPCR), dual-luciferase assays and western blotting. Additionally, we further investigated the specific therapeutic mechanism of DEDM in an oxidative stress cell model. RESULTS: The results indicated that DEDM effectively ameliorated oxidative stress and apoptosis post-TBI, mitigating neurological dysfunction and brain injury in mice. DEDM facilitated the deacetylation of FOXO3a by up-regulating the expression of the deacetylase SIRT1, consequently suppressing Bim expression. This mechanism contributed to the alleviation of neurological injury and symptom improvement in TBI-afflicted mice. Remarkably, SIRT1 emerged as a central mediator in the overall treatment mechanism. CONCLUSIONS: DEDM exerted significant neuroprotective effects on TBI mice by modulating the SIRT1/FOXO3a/Bim pathway. Our innovative research provides a basis for further exploration of the clinical therapeutic potential of DEDM in the context of TBI.


Assuntos
Alcaloides , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Sirtuína 1/metabolismo , Proteína 11 Semelhante a Bcl-2/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Apoptose , Modelos Animais de Doenças
7.
J Ethnopharmacol ; 319(Pt 3): 117335, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863400

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Early brain damage (EBI) following subarachnoid hemorrhage (SAH) is a long-lasting condition with a high occurrence. However, treatment options are restricted. Wu-zhu-yu Decoction (WZYD) can treat headaches and vomiting, which are similar to the early symptoms of subarachnoid hemorrhage (SAH). However, it is yet unknown if WZYD can reduce EBI following SAH and its underlying mechanisms. AIM OF THE STUDY: This study aimed to investigate whether WZYD protects against EBI following SAH by inhibiting oxidative stress through activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling via Sirtuin 6 (SIRT6)-mediated histone H3 lysine 56 (H3K56) deacetylation. MATERIALS AND METHODS: In the current investigation, the principal components of WZYD were identified using high-performance liquid chromatography-diode array detection (HPLC-DAD). The SAH model in rats using the internal carotid artery plug puncture approach and the SAH model in primary neurons using hemoglobin incubation were developed. WZYD with different doses (137 mg kg-1, 274 mg kg-1, 548 mg kg-1) and the positive drug-Nimodipine (40 mg kg-1) were intragastrically administered in SAH model rats, respectively. The PC12 cells were cultured with corresponding medicated for 24h. In our investigation, neurological scores, brain water content, Evans blue leakage, Nissl staining, TUNEL staining, oxidative stress, expression of apoptosis-related proteins, and Nrf2/HO-1 signaling were evaluated. The interaction between SIRT6 and Nrf2 was detected by co-immunoprecipitation. SIRT6 knockdown was used to confirm its role in WZYD's neuroprotection. RESULTS: The WZYD treatment dramatically reduced cerebral hemorrhage and edema, and enhanced neurological results in EBI following SAH rats. WZYD administration inhibited neuronal apoptosis via reducing the expression levels of Cleaved cysteinyl aspartate specific proteinase-3(Cleaved Caspase-3), cysteinyl aspartate specific proteinase-3(caspase-3), and Bcl-2, Associated X Protein (Bax) and increasing the expression of B-cell lymphoma-2(Bal2). It also decreased reactive oxygen species and malondialdehyde levels and increased Nrf2 and HO-1 expression in the rat brain after SAH. In vitro, WZYD attenuated hemoglobin-induced cytotoxicity, oxidative stress and apoptosis in primary neurons. Mechanistically, WZYD enhanced SIRT6 expression and H3K56 deacetylation, activated Nrf2/HO-1 signaling, and promoted the interaction between SIRT6 and Nrf2. Knockdown of SIRT6 abolished WZYD-induced neuroprotection. CONCLUSIONS: WZYD attenuates EBI after SAH by activating Nrf2/HO-1 signaling through SIRT6-mediated H3K56 deacetylation, suggesting its therapeutic potential for SAH treatment.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Sirtuínas , Hemorragia Subaracnóidea , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3 , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Ácido Aspártico/farmacologia , Ácido Aspártico/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Apoptose , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
8.
Appl Environ Microbiol ; 89(9): e0080723, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671870

RESUMO

Complete ammonia oxidizers (comammox Nitrospira) are ubiquitous in coastal wetland sediments and play an important role in nitrification. Our study examined the impact of habitat modifications on comammox Nitrospira communities in coastal wetland sediments across tropical and subtropical regions of southeastern China. Samples were collected from 21 coastal wetlands in five provinces where native mudflats were invaded by Spartina alterniflora and subsequently converted to aquaculture ponds. The results showed that comammox Nitrospira abundances were mainly influenced by sediment grain size rather than by habitat modifications. Compared to S. alterniflora marshes and native mudflats, aquaculture pond sediments had lower comammox Nitrospira diversity, lower clade A.1 abundance, and higher clade A.2 abundance. Sulfate concentration was the most important factor controlling the diversity of comammox Nitrospira. The response of comammox Nitrospira community to habitat change varied significantly by location, and environmental variables accounted for only 11.2% of the variations in community structure across all sites. In all three habitat types, dispersal limitation largely controlled the comammox Nitrospira community assembly process, indicating the stochastic nature of these sediment communities in coastal wetlands. IMPORTANCE Comammox Nitrospira have recently gained attention for their potential role in nitrification and nitrous oxide (N2O) emissions in soil and sediment. However, their distribution and assembly in impacted coastal wetland are poorly understood, particularly on a large spatial scale. Our study provides novel evidence that the effects of habitat modification on comammox Nitrospira communities are dependent on the location of the wetland. We also found that the assembly of comammox Nitrospira communities in coastal wetlands was mainly governed by stochastic processes. Nevertheless, sediment grain size and sulfate concentration were identified as key variables affecting comammox Nitrospira abundance and diversity in coastal sediments. These findings are significant as they advance our understanding of the environmental adaptation of comammox Nitrospira and how future landscape modifications may impact their abundance and diversity in coastal wetlands.


Assuntos
Bactérias , Áreas Alagadas , Oxirredução , Nitrificação , Amônia , China , Archaea , Filogenia
9.
Front Oncol ; 13: 1147805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37681027

RESUMO

Introduction: Immunogenic cell death (ICD) is a form of regulated cell death that activates an adaptive immune response in an immunocompetent host and is particularly sensitive to antigens from tumor cells. Kidney clear cell carcinoma (KIRC) is an immunogenic tumor with extensive tumor heterogeneity. However, no reliable predictive biomarkers have been identified to reflect the immune microenvironment and therapeutic response of KIRC. Methods: Therefore, we used the CIBERSORT and ESTIMATE algorithms to define three ICD clusters based on the expression of ICD-related genes in 661 KIRC patients. Subsequently, we identified three different ICD gene clusters based on the overlap of differentially expressed genes (DEGs) within the ICD clusters. In addition, principal component analysis (PCA) was performed to calculate the ICD scores. Results: The results showed that patients with reduced ICD scores had a poorer prognosis and reduced transcript levels of immune checkpoint genes regulated with T cell differentiation. Furthermore, the ICD score was negatively correlated with the tumor mutation burden (TMB) value of KICD. patients with higher ICD scores showed clinical benefits and advantages of immunotherapy, indicating that the ICD score is an accurate and valid predictor to assess the effect of immunotherapy. Discussion: Overall, our study presents a comprehensive KICD immune-related ICD landscape that can provide guidance for current immunotherapy and predict patient prognosis to help physicians make judgments about the patient's disease and treatment modalities, and can guide current research on immunotherapy strategies for KICD.

10.
Phys Med Biol ; 68(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549670

RESUMO

Objective. Non-primary radiation doses to normal tissues from proton therapy may be associated with an increased risk of secondary malignancies, particularly in long-term survivors. Thus, a systematic method to evaluate if the dose level of non-primary radiation meets the IEC standard requirements is needed.Approach. Different from the traditional photon radiation therapy system, proton therapy systems are composed of several subsystems in a thick bunker. These subsystems are all possible sources of non-primary radiation threatening the patient. As a case study, 7 sources in the P-Cure synchrotron-based proton therapy system are modeled in Monte Carlo (MC) code: tandem injector, injection, synchrotron ring, extraction, beam transport line, scanning nozzle and concrete reflection/scattering. To accurately evaluate the synchrotron beam loss and non-primary dose, a new model called the torus source model is developed. Its parametric equations define the position and direction of the off-orbit particle bombardment on the torus pipe shell in the Cartesian coordinate system. Non-primary doses are finally calculated by several FLUKA simulations.Main results. The ratios of summarized non-primary doses from different sources to the planned dose of 2 Gy are all much smaller than the IEC requirements in both the 15-50 cm and 50-200 cm regions. Thus, the P-Cure synchrotron-based proton therapy system is clean and patient-friendly, and there is no need an inner shielding concrete between the accelerator and patient.Significance. Non-primary radiation dose level is a very important indicator to evaluate the quality of a PT system. This manuscript provides a feasible MC procedure for synchrotron-based proton therapy with new beam loss model. Which could help people figure out precisely whether this level complies with the IEC standard before the system put into clinical treatment. What' more, the torus source model could be widely used for bending magnets in gantries and synchrotrons to evaluate non-primary doses or other radiation doses.


Assuntos
Terapia com Prótons , Humanos , Doses de Radiação , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Síncrotrons , Método de Monte Carlo , Dosagem Radioterapêutica
11.
Biomed Pharmacother ; 166: 115300, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557014

RESUMO

BACKGROUND: Due to its widespread prevalence, migraine is a common neurovascular condition that has a major impact on people's health and quality of life. Rutaecarpine (RUT) is one of the main effective components of Evodia rutaecarpa, which has a wide range of biological activities. However, the exact mechanism by which RUT improves migraine remain unknown. PURPOSE: The purpose of this study was to investigate whether RUT improves migraine by inhibiting oxidative stress via activating the Nrf2 antioxidant system through the PTEN/PGK1 signaling pathway. METHODS: In vivo, a mouse model of chronic migraine (CM) was established by repeated intraperitoneal injection of nitroglycerin (NTG). After treatment with RUT and Sumatriptan, behavioral tests were performed, followed by measurements of oxidative stress-related indicators in the trigeminal nucleus caudalis, expression of proteins associated with the Nrf2 antioxidant system, and the PTEN/PGK1 pathway. In vitro, PC12 cells were stimulated by 100 µM H2O2 for 24 h to induce oxidative stress, which was then treated with RUT. Furthermore, the role of PTEN in antioxidant stress of RUT was elucidated by knockout of the PTEN gene. RESULTS: The results showed that RUT treatment improved NTG-induced migraine in mice by inhibiting oxidative stress. Importantly, RUT inhibited oxidative stress in NTG-induced mice or H2O2-induced PC12 cells via activating the Nrf2 antioxidant system by inhibiting PGK1 activity through PTEN. These results provide evidence that RUT improves migraine by activation of the Nrf2 antioxidant system through the PTEN/PGK1 pathway and provide new insights into the potential use of RUT as an effective drug development candidate for migraine.


Assuntos
Transtornos de Enxaqueca , Nitroglicerina , Ratos , Camundongos , Animais , Nitroglicerina/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/farmacologia , Qualidade de Vida , Transdução de Sinais , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo
12.
Fish Shellfish Immunol ; 134: 108636, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36828199

RESUMO

Interferon gamma (IFN-γ), the member of type II interferons, is a major driver and effector cytokine for Th1 cells and plays broad roles in regulating the function of immune cells. Teleost fish represents the oldest living bony vertebrates containing T-lymphocyte subsets. However, whether or how the regulatory mechanisms of IFN-γ on Th1 cells occur in teleost fish remain unknown. In this study, full-length transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and signaling pathways in the IFN-γ stimulated lymphocytes of flounder (Paralichthys olivaceus), the data showed 811 genes were upregulated and 1107 genes were downregulated, Th1 and Th2 cell differentiation pathway was remarkably enriched from DEGs, and the genes in the Th1 cell differentiation pathway were upregulated and verified. Accordingly, variations on Th1 cell differentiation marker genes and CD4+ cells were investigated after IFN-γ stimulation, the results confirmed that CD4+ T lymphocytes proliferated significantly after IFN-γ stimulation, accompanied by eight genes significant upregulation and increased T-bet expression in lymphocytes. In conclusion, the results revealed an induction of IFN-γ on Th1-type immune response, providing novel perspectives into the differentiation of CD4+ T lymphocytes in teleost.


Assuntos
Linguado , Interferon gama , Animais , Interferon gama/genética , Transcriptoma , Linfócitos T CD4-Positivos , Células Th1 , Imunidade
13.
Microb Ecol ; 86(2): 1120-1131, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36372840

RESUMO

Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.


Assuntos
Micobioma , Áreas Alagadas , Espécies Introduzidas , Plantas , Poaceae/fisiologia , Solo/química , Fungos/genética , Microbiologia do Solo , China
14.
Crit Rev Food Sci Nutr ; 63(19): 3386-3419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34637646

RESUMO

The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.


Assuntos
Alimentos , Pectinas , Humanos , Estrutura Molecular , Peso Molecular , Preparações Farmacêuticas
15.
Microb Ecol ; 85(1): 209-220, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35034141

RESUMO

Plant species play a crucial role in mediating the activity and community structure of soil microbiomes through differential inputs of litter and rhizosphere exudates, but we have a poor understanding of how plant species influence comammox Nitrospira, a newly discovered ammonia oxidizer with pivotal functionality. Here, we investigate the abundance, diversity, and community structure of comammox Nitrospira underneath five plant species and a bare tidal flat at three soil depths in a subtropical estuarine wetland. Plant species played a critical role in driving the distribution of individual clades of comammox Nitrospira, explaining 59.3% of the variation of community structure. Clade A.1 was widely detected in all samples, while clades A.2.1, A.2.2, A.3 and B showed plant species-dependent distribution patterns. Compared with the native species Cyperus malaccensis, the invasion of Spartina alterniflora increased the network complexity and changed the community structure of comammox Nitrospira, while the invasive effects from Kandelia obovata and Phragmites australis were relatively weak. Soil depths significantly influenced the community structure of comammox Nitrospira, but the effect was much weaker than that from plant species. Altogether, our results highlight the previously unrecognized critical role of plant species in driving the distribution of comammox Nitrospira in a subtropical estuarine wetland.


Assuntos
Nitrificação , Áreas Alagadas , Oxirredução , Bactérias , Amônia , Solo/química , Poaceae
16.
Front Immunol ; 13: 1013311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466850

RESUMO

Ischemic stroke (IS) is one of the major types of cerebrovascular diseases causing neurological morbidity and mortality worldwide. In the pathophysiological process of IS, microglia play a beneficial role in tissue repair. However, it could also cause cellular damage, consequently leading to cell death. Inflammation is characterized by the activation of microglia, and increasing evidence showed that autophagy interacts with inflammation through regulating correlative mediators and signaling pathways. In this paper, we summarized the beneficial and harmful effects of microglia in IS. In addition, we discussed the interplay between microglia autophagy and ischemic inflammation, as along with its application in the treatment of IS. We believe this could help to provide the theoretical references for further study into IS and treatments in the future.


Assuntos
AVC Isquêmico , Microglia , Humanos , Autofagia , Morte Celular , Inflamação
17.
Small ; 18(48): e2205356, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36251788

RESUMO

Lead selenide (PbSe) colloidal quantum dots (CQDs) are promising candidates for optoelectronic applications. To date, PbSe CQDs capped by halide ligands exhibit improved stability and solar cells using these CQDs as active layers have reported a remarkable power conversion efficiency (PCE) up to 10%. However, PbSe CQDs are more prone to oxidation, requiring delicate control over their processability and compromising their applications. Herein, an efficient strategy that addresses this issue by an in situ cation-exchange process is reported. This is achieved by a two-phase ligand exchange process where PbI2 serves as both a passivating ligand and cation-source inducing transformation of CdSe to PbSe. The defect density and carrier lifetime of PbSe CQD films are improved to 1.05 × 1016  cm-3 and 12.2 ns, whereas the traditional PbSe CQD films possess 1.9 × 1016  cm-3 defect density and 10.2 ns carrier lifetime. These improvements are translated into an enhancement of photovoltaic performance of PbSe solar cells, with a PCE of up to 11.6%, ≈10% higher than the previous record. Notably, the approach enables greatly improved stability and a two-month stability is successfully demonstrated. This strategy is expected to promote the fast development of PbSe CQD applications in low-cost and high-performance optoelectronic devices.

18.
Comput Methods Programs Biomed ; 224: 107006, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816816

RESUMO

BACKGROUND AND OBJECTIVE: Biological reconstruction was commonly used for femoral intercalary defect. The initial stability by plate fixation was believed to have an effect on bone union and implant failure. Our study was proposed to explore relationship of plate configuration and initial stability for femoral intercalary reconstruction using allo-/autograft. METHODS: Femoral intercalary defect models were established with four different plate configurations: (1) Single lateral bridging plate, SLP (2) Lateral bridging plate + Orthogonal adjuvant plate, LP+OAP (3) Lateral bridging plate + Medial adjuvant plate, LP+MAP (4) Lateral bridging plate + Medial bridging plate, LP+MP. A diaphysis defect of 12 cm was simulated, and the removed native femoral bone was used as a structural allograft with the osteotomy gap of 2 mm. Models were analyzed by finite element simulations under an axial compression of 2000N and an axial moment of 10 Nm, respectively. RESULTS: Axial load: (1) The peak von Mises stress of SLP, LP+OAP, LP+MAP, LP+MP were 993.50 MPa, 335.63 MPa, 240.03 MPa, 281.73 MPa, respectively and LP+MAP was the lowest (p < 0.01); (2) The mean displacement of SLP, LP+OAP, LP+MAP, LP+MP was 0.765, 0.130, 0.121, 0.235 mm, respectively. LP+MAP showed the best stability while SLP had a crash in the medial proximal gap; (3) The LP+MAP configuration had the most uniform stress distribution and the lowest maximum von Mises stress of 79.7 MPa within plates. Axial torsional load: (1) The peak von Mises stress of SLP, LP+OAP, LP+MAP, LP+MP were 431.66Mpa, 120.73 MPa, 72.31 MPa, 109.86 MPa, respectively; (2) The rotation angle of SLP, LP+OAP, LP+MAP, LP+MP was 4.30°, 1.35°, 1.20°, 1.57°, respectively. All of LP+OAP, LP+MAP and LP+MP showed an optimal torsional stability. CONCLUSIONS: For femoral intercalary reconstruction using allo-/autograft fixed by plates, LP+MAP and LP+MP configurations showed superior stability in terms of axial compression and torsion load by FE simulation. A better stability was believed to be associated with higher union rate and lower hardware failure rate.


Assuntos
Placas Ósseas , Fixação Interna de Fraturas , Fenômenos Biomecânicos , Fêmur/cirurgia , Análise de Elementos Finitos , Estresse Mecânico
19.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1622-1628, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35729141

RESUMO

Subtropical region of China is one of the global hotspots receiving nitrogen deposition. Nitrogen deposition could affect the abundance and community structure of ammonia oxidizers including ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and complete ammonia oxidizer (comammox Nitrospira), with consequences on soil nutrient cycling that are driven by microorganisms. There is limited understanding for the newly discovered comammox Nitrospira in the subtropical forest soils. Here, we investigated the effect of simulated N deposition on abundances of soil ammonia oxidizers in the Castanopsis fargesii Nature Reserve in Xinkou Town, Sanming City, Fujian Province, China. Soil samples were collected from the field plots which received long-term nitrogen deposition with different dosages, including: CK, no additional treatment; LN, low nitrogen deposition treatment, dosage of 40 kg N·hm-2·a-1; and HN, high nitrogen deposition treatment, dosage of 80 kg N·hm-2·a-1. After 8-year treatment, simulated N deposition decreased soil pH and organic matter content, and increased nitrate content. We failed to amplify the amoA gene of AOB in the tested soils. High nitrogen deposition increased the abundance of AOA, but did not affect the abundance of comammox Nitrospira clade A and clade B. The ratio of comammox Nitrospira to AOA decreased with N addition, indicating that N addition weakened the role of comammox Nitrospira in nitrification in the subtropical forest soils. However, there were strong non-specific amplifications for both comammox Nitrospira clades A and B, highlighting the demand for the development of high coverage and specificity primers for comammox Nitrospira investigations in the future. The abundance of comammox Nitrospira clade A was positively correlated with total nitrogen (TN) and NH4+ concentration, while that of clade B was positively associated with soil organic carbon (SOC), TN and NH4+ Concentration. Overall, our findings demonstrated that simulated N deposition increased the relative importance of AOA in nitrification in the natural Castanopsis carlesii forest soil. These findings could provide theoretical support in coping with global change and N deposition in these regions.


Assuntos
Amônia , Solo , Archaea/genética , Bactérias/genética , Carbono , Florestas , Nitrificação , Nitrogênio , Oxirredução , Filogenia , Solo/química , Microbiologia do Solo
20.
Front Oncol ; 12: 829705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433424

RESUMO

Ubiquitin-specific peptidase 10 (USP10) can sustain cellular functions and regulate cellular processes. It plays an essential role in cancer inhibition or facilitation by reversing ubiquitin-proteasome degradation. Studies have identified USP10 to be involved in tumor progression in various cancers. However, the pan-cancer expression pattern of USP10, its prognostic value, and the association between tumor immune cell infiltration and USP10 expression remain to be discussed and thus comprised the aims of the present study. Based on clinical samples and bioinformatic analyses, high USP10 expression was observed in most cancer tissues except for ovarian cancer. High USP10 expression correlated with pathological stage and node metastasis and predicted poor patient prognosis. In addition, further analyses at the TIMER and GEPIA databases showed that USP10 is involved in the infiltration of multiple immune cells and regulated the infiltration levels of specific immune cell subpopulations, particularly in pancreatic adenocarcinoma (PAAD) and liver hepatocellular carcinoma (LIHC). Importantly, USP10 might influence survival by modulating immune infiltration in patients with PAAD and LIHC. These results identified USP10 as a potential biomarker for pan-cancer prognosis, and in certain cancers, USP10 could identify clinical prognosis linked to tumor immune infiltration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...