Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927993

RESUMO

Amyloid β-protein(Aβ) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aβ_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aβ-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aβ, and may reduce Aβ-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.


Assuntos
Animais , Humanos , Ratos , Peptídeos beta-Amiloides/toxicidade , Ginsenosídeos/farmacologia , Mitofagia/fisiologia , Células PC12 , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Int J Pharm ; 487(1-2): 223-33, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25895716

RESUMO

Non-small cell lung cancer (NSCLC) is one of the frequently-occurring disease in the world, and the treatment effects are usually unsatisfactory. Vinblastine is an anti-microtubule drug in clinic. In this study, a nanostructured liposome was designed and prepared for treating NSCLC. In the liposomes, peanut agglutinin (PNA) was modified on the liposomal surface, 3-(N-(N',N'-dimethylaminoethane)carbamoyl) cholesterol was used as cationic materials, and vinblastine was encapsulated in the aqueous core of liposomes, respectively. The PNA modified vinblastine cationic liposomes were approximately 100 nm in size with a positive potential. In vitro results showed that the targeting liposomes could significantly enhance cellular uptake, selectively accumulate in LLT cells, and dramatically initiate apoptosis via activating pro-apoptotic proteins and apoptotic enzymes, thus leading to the strongest antitumor efficacy to LLT cells. In vivo results demonstrated that the targeting liposomes could display a prolonged circulation time in the blood, accumulate more drug in tumor location, and induce most of tumor cells apoptosis. As a result, a robust overall antitumor efficacy in tumor-bearing mice was observed subsequently. In conclusion, the chemotherapy using the PNA modified vinblastine cationic liposomes could provide a potential strategy for treating non-small cell lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Aglutinina de Amendoim/farmacologia , Vimblastina/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Cumarínicos/química , Composição de Medicamentos , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Tamanho da Partícula , Vimblastina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Drug Target ; 23(3): 232-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25417934

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer, and the treatment effects are usually unsatisfactory. Vinorelbine (VRB) is extensively used in cancer treatment, but it has some disadvantages when used alone. PEGylated liposomes have been extensively used as a delivery carrier for antitumor drugs via prolonging the circulation time in the blood. PURPOSE: The nanostructured liposomes were designed and prepared for treating NSCLC. METHODS: In the liposomes, PEG was modified on the liposomal surface, DC-Chol was used as cationic materials, and VRB plus quinacrine were encapsulated in an aqueous core of the liposomes as an antitumor drug and an apoptosis-inducing agent, respectively. Evaluations were performed on A549 cells, tubular network formations and xenografts of the A549 cells. RESULTS: The PEGylated drugs-loaded cationic liposomes could significantly enhance cellular uptake and selectively accumulate in A549 cells, thus leading to show strongest antitumor efficacy to tumor cells and to tumor-bearing mice. Action mechanisms showed that the enhanced efficacy in treating NSCLC was related to activate caspase 9 and caspase 3, to activate Bax and P53, and to suppress Bcl-2 and Mcl-1. CONCLUSION: The PEGylated VRB plus quinacrine cationic liposomes showed a potential strategy for treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Polietilenoglicóis/química , Quinacrina/administração & dosagem , Quinacrina/uso terapêutico , Vimblastina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos , Masculino , Camundongos , Quinacrina/química , Quinacrina/farmacologia , Vimblastina/administração & dosagem , Vimblastina/química , Vimblastina/farmacologia , Vimblastina/uso terapêutico , Vinorelbina , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...