Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Nat Commun ; 15(1): 3670, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693110

RESUMO

In charged water microdroplets, which occur in nature or in the lab upon ultrasonication or in electrospray processes, the thermodynamics for reactive chemistry can be dramatically altered relative to the bulk phase. Here, we provide a theoretical basis for the observation of accelerated chemistry by simulating water droplets of increasing charge imbalance to create redox agents such as hydroxyl and hydrogen radicals and solvated electrons. We compute the hydration enthalpy of OH- and H+ that controls the electron transfer process, and the corresponding changes in vertical ionization energy and vertical electron affinity of the ions, to create OH• and H• reactive species. We find that at ~ 20 - 50% of the Rayleigh limit of droplet charge the hydration enthalpy of both OH- and H+ have decreased by >50 kcal/mol such that electron transfer becomes thermodynamically favorable, in correspondence with the more favorable vertical electron affinity of H+ and the lowered vertical ionization energy of OH-. We provide scaling arguments that show that the nanoscale calculations and conclusions extend to the experimental microdroplet length scale. The relevance of the droplet charge for chemical reactivity is illustrated for the formation of H2O2, and has clear implications for other redox reactions observed to occur with enhanced rates in microdroplets.

2.
ArXiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38764597

RESUMO

Sidechain rotamer libraries of the common amino acids of a protein are useful for folded protein structure determination and for generating ensembles of intrinsically disordered proteins (IDPs). However much of protein function is modulated beyond the translated sequence through thFiguree introduction of post-translational modifications (PTMs). In this work we have provided a curated set of side chain rotamers for the most common PTMs derived from the RCSB PDB database, including phosphorylated, methylated, and acetylated sidechains. Our rotamer libraries improve upon existing methods such as SIDEpro and Rosetta in predicting the experimental structures for PTMs in folded proteins. In addition, we showcase our PTM libraries in full use by generating ensembles with the Monte Carlo Side Chain Entropy (MCSCE) for folded proteins, and combining MCSCE with the Local Disordered Region Sampling algorithms within IDPConformerGenerator for proteins with intrinsically disordered regions.

3.
J Chem Theory Comput ; 20(5): 2152-2166, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38331423

RESUMO

Theoretical predictions of NMR chemical shifts from first-principles can greatly facilitate experimental interpretation and structure identification of molecules in gas, solution, and solid-state phases. However, accurate prediction of chemical shifts using the gold-standard coupled cluster with singles, doubles, and perturbative triple excitations [CCSD(T)] method with a complete basis set (CBS) can be prohibitively expensive. By contrast, machine learning (ML) methods offer inexpensive alternatives for chemical shift predictions but are hampered by generalization to molecules outside the original training set. Here, we propose several new ideas in ML of the chemical shift prediction for H, C, N, and O that first introduce a novel feature representation, based on the atomic chemical shielding tensors within a molecular environment using an inexpensive quantum mechanics (QM) method, and train it to predict NMR chemical shieldings of a high-level composite theory that approaches the accuracy of CCSD(T)/CBS. In addition, we train the ML model through a new progressive active learning workflow that reduces the total number of expensive high-level composite calculations required while allowing the model to continuously improve on unseen data. Furthermore, the algorithm provides an error estimation, signaling potential unreliability in predictions if the error is large. Finally, we introduce a novel approach to keep the rotational invariance of the features using tensor environment vectors (TEVs) that yields a ML model with the highest accuracy compared to a similar model using data augmentation. We illustrate the predictive capacity of the resulting inexpensive shift machine learning (iShiftML) models across several benchmarks, including unseen molecules in the NS372 data set, gas-phase experimental chemical shifts for small organic molecules, and much larger and more complex natural products in which we can accurately differentiate between subtle diastereomers based on chemical shift assignments.

4.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060268

RESUMO

SUMMARY: The Local Disordered Region Sampling (LDRS, pronounced loaders) tool is a new module developed for IDPConformerGenerator, a previously validated approach to model intrinsically disordered proteins (IDPs). The IDPConformerGenerator LDRS module provides a method for generating all-atom conformations of intrinsically disordered protein regions at N- and C-termini of and in loops or linkers between folded regions of an existing protein structure. These disordered elements often lead to missing coordinates in experimental structures or low confidence in predicted structures. Requiring only a pre-existing PDB or mmCIF formatted structural template of the protein with missing coordinates or with predicted confidence scores and its full-length primary sequence, LDRS will automatically generate physically meaningful conformational ensembles of the missing flexible regions to complete the full-length protein. The capabilities of the LDRS tool of IDPConformerGenerator include modeling phosphorylation sites using enhanced Monte Carlo-Side Chain Entropy, transmembrane proteins within an all-atom bilayer, and multi-chain complexes. The modeling capacity of LDRS capitalizes on the modularity, the ability to be used as a library and via command-line, and the computational speed of the IDPConformerGenerator platform. AVAILABILITY AND IMPLEMENTATION: The LDRS module is part of the IDPConformerGenerator modeling suite, which can be downloaded from GitHub at https://github.com/julie-forman-kay-lab/IDPConformerGenerator. IDPConformerGenerator is written in Python3 and works on Linux, Microsoft Windows, and Mac OS versions that support DSSP. Users can utilize LDRS's Python API for scripting the same way they can use any part of IDPConformerGenerator's API, by importing functions from the "idpconfgen.ldrs_helper" library. Otherwise, LDRS can be used as a command line interface application within IDPConformerGenerator. Full documentation is available within the command-line interface as well as on IDPConformerGenerator's official documentation pages (https://idpconformergenerator.readthedocs.io/en/latest/).


Assuntos
Proteínas Intrinsicamente Desordenadas , Software , Biblioteca Gênica , Proteínas de Membrana , Documentação
5.
J Phys Chem Lett ; 14(51): 11742-11749, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38116782

RESUMO

The Raman spectrum of liquid water is quite complex, reflecting its strong sensitivity to the local environment of the individual waters. The OH-stretch region of the spectrum, which captures the influence of hydrogen bonding, has only just begun to be unraveled. Here we develop a model for predicting the Raman spectra of the OH-stretch region by considering how local electric fields distort the energy surface of each water monomer. We find that our model is capable of reproducing the bimodal nature of the main peak, with the shoulder at 3250 cm-1 resulting almost entirely from Fermi resonance. Furthermore, we capture the temperature and polarization dependence of the shoulder, which has proven to be difficult to obtain with previous methods, and analyze the origin of this dependence. We expect our model to be generally useful for understanding and predicting how Raman spectra change under different conditions and with different probe reporters beyond water.

6.
ACS Cent Sci ; 9(11): 2161-2170, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033801

RESUMO

We leveraged the power of ChatGPT and Bayesian optimization in the development of a multi-AI-driven system, backed by seven large language model-based assistants and equipped with machine learning algorithms, that seamlessly orchestrates a multitude of research aspects in a chemistry laboratory (termed the ChatGPT Research Group). Our approach accelerated the discovery of optimal microwave synthesis conditions, enhancing the crystallinity of MOF-321, MOF-322, and COF-323 and achieving the desired porosity and water capacity. In this system, human researchers gained assistance from these diverse AI collaborators, each with a unique role within the laboratory environment, spanning strategy planning, literature search, coding, robotic operation, labware design, safety inspection, and data analysis. Such a comprehensive approach enables a single researcher working in concert with AI to achieve productivity levels analogous to those of an entire traditional scientific team. Furthermore, by reducing human biases in screening experimental conditions and deftly balancing the exploration and exploitation of synthesis parameters, our Bayesian search approach precisely zeroed in on optimal synthesis conditions from a pool of 6 million within a significantly shortened time scale. This work serves as a compelling proof of concept for an AI-driven revolution in the chemistry laboratory, painting a future where AI becomes an efficient collaborator, liberating us from routine tasks to focus on pushing the boundaries of innovation.

7.
J Am Chem Soc ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917924

RESUMO

Accurate potential energy models of proteins must describe the many different types of noncovalent interactions that contribute to a protein's stability and structure. Pi-pi contacts are ubiquitous structural motifs in all proteins, occurring between aromatic and nonaromatic residues and play a nontrivial role in protein folding and in the formation of biomolecular condensates. Guided by a geometric criterion for isolating pi-pi contacts from classical molecular dynamics simulations of proteins, we use quantum mechanical energy decomposition analysis to determine the molecular interactions that stabilize different pi-pi contact motifs. We find that neutral pi-pi interactions in proteins are dominated by Pauli repulsion and London dispersion rather than repulsive quadrupole electrostatics, which is central to the textbook Hunter-Sanders model. This results in a notable lack of variability in the interaction profiles of neutral pi-pi contacts even with extreme changes in the dielectric medium, explaining the prevalence of pi-stacked arrangements in and between proteins. We also find interactions involving pi-containing anions and cations to be extremely malleable, interacting like neutral pi-pi contacts in polar media and like typical ion-pi interactions in nonpolar environments. Like-charged pairs such as arginine-arginine contacts are particularly sensitive to the polarity of their immediate surroundings and exhibit canonical pi-pi stacking behavior only if the interaction is mediated by environmental effects, such as aqueous solvation.

8.
Chem Sci ; 14(39): 10934-10943, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37829021

RESUMO

We present an investigation into the transferability of pseudopotentials (PPs) with a nonlinear core correction (NLCC) using the Goedecker, Teter, and Hutter (GTH) protocol across a range of pure GGA, meta-GGA and hybrid functionals, and their impact on thermochemical and non-thermochemical properties. The GTH-NLCC PP for the PBE density functional demonstrates remarkable transferability to the PBE0 and ωB97X-V exchange-correlation functionals, and relative to no NLCC, improves agreement significantly for thermochemical benchmarks compared to all-electron calculations. On the other hand, the B97M-rV meta-GGA functional performs poorly with the PBE-derived GTH-NLCC PP, which is mitigated by reoptimizing the NLCC parameters for this specific functional. The findings reveal that atomization energies exhibit the greatest improvements from use of the NLCC, which thus provides an important correction needed for covalent interactions relevant to applications involving chemical reactivity. Finally we test the NLCC-GTH PPs when combined with medium-size TZV2P molecularly optimized (MOLOPT) basis sets which are typically utilized in condensed phase simulations, and show that they lead to consistently good results when compared to all-electron calculations for atomization energies, ionization potentials, barrier heights, and non-covalent interactions, but lead to somewhat larger errors for electron affinities.

9.
J Phys Chem A ; 127(36): 7501-7509, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669457

RESUMO

The rates of many chemical reactions are accelerated when carried out in micron-sized droplets, but the molecular origin of the rate acceleration remains unclear. One example is the condensation reaction of 1,2-diaminobenzene with formic acid to yield benzimidazole. The observed rate enhancements have been rationalized by invoking enhanced acidity at the surface of methanol solvent droplets with low water content to enable protonation of formic acid to generate a cationic species (protonated formic acid or PFA) formed by attachment of a proton to the neutral acid. Because PFA is the key feature in this reaction mechanism, vibrational spectra of cryogenically cooled, microhydrated PFA·(H2O)n=1-6 were acquired to determine how the extent of charge localization depends on the degree of hydration. Analysis of these highly anharmonic spectra with path integral ab initio molecular dynamics simulations reveals the gradual displacement of the excess proton onto the water network in the microhydration regime at low temperatures with n = 3 as the tipping point for intra-cluster proton transfer.

10.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546943

RESUMO

The Local Disordered Region Sampling (LDRS, pronounced loaders) tool, developed for the IDPConformerGenerator platform (Teixeira et al. 2022), provides a method for generating all-atom conformations of intrinsically disordered regions (IDRs) at N- and C-termini of and in loops or linkers between folded regions of an existing protein structure. These disordered elements often lead to missing coordinates in experimental structures or low confidence in predicted structures. Requiring only a pre-existing PDB structure of the protein with missing coordinates or with predicted confidence scores and its full-length primary sequence, LDRS will automatically generate physically meaningful conformational ensembles of the missing flexible regions to complete the full-length protein. The capabilities of the LDRS tool of IDPConformerGenerator include modeling phosphorylation sites using enhanced Monte Carlo Side Chain Entropy (MC-SCE) (Bhowmick and Head-Gordon 2015), transmembrane proteins within an all-atom bilayer, and multi-chain complexes. The modeling capacity of LDRS capitalizes on the modularity, ability to be used as a library and via command-line, and computational speed of the IDPConformerGenerator platform.

11.
J Chem Theory Comput ; 19(17): 5872-5885, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37585272

RESUMO

We use local diffusion maps to assess the quality of two types of collective variables (CVs) for a recently published hydrogen combustion benchmark dataset1 that contains ab initio molecular dynamics (MD) trajectories and normal modes along minimum energy paths. This approach was recently advocated in2 for assessing CVs and analyzing reactions modeled by classical MD simulations. We report the effectiveness of this approach to molecular systems modeled by quantum ab initio MD. In addition to assessing the quality of CVs, we also use global diffusion maps to perform committor analysis as proposed in.2 We show that the committor function obtained from the global diffusion map allows us to identify transition regions of interest in several hydrogen combustion reaction channels.

12.
ArXiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645037

RESUMO

Many physics-based and machine-learned scoring functions (SFs) used to predict protein-ligand binding free energies have been trained on the PDBBind dataset. However, it is controversial as to whether new SFs are actually improving since the general, refined, and core datasets of PDBBind are cross-contaminated with proteins and ligands with high similarity, and hence they may not perform comparably well in binding prediction of new protein-ligand complexes. In this work we have carefully prepared a cleaned PDBBind data set of non-covalent binders that are split into training, validation, and test datasets to control for data leakage. The resulting leak-proof (LP)-PDBBind data is used to retrain four popular SFs: AutoDock vina, Random Forest (RF)-Score, InteractionGraphNet (IGN), and DeepDTA, to better test their capabilities when applied to new protein-ligand complexes. In particular we have formulated a new independent data set, BDB2020+, by matching high quality binding free energies from BindingDB with co-crystalized ligand-protein complexes from the PDB that have been deposited since 2020. Based on all the benchmark results, the retrained models using LP-PDBBind that rely on 3D information perform consistently among the best, with IGN especially being recommended for scoring and ranking applications for new protein-ligand systems.

13.
Mol Phys ; 121(9-10)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470065

RESUMO

We present a new software package called M-Chem that is designed from scratch in C++ and parallelized on shared-memory multi-core architectures to facilitate efficient molecular simulations. Currently, M-Chem is a fast molecular dynamics (MD) engine that supports the evaluation of energies and forces from two-body to many-body all-atom potentials, reactive force fields, coarse-grained models, combined quantum mechanics molecular mechanics (QM/MM) models, and external force drivers from machine learning, augmented by algorithms that are focused on gains in computational simulation times. M-Chem also includes a range of standard simulation capabilities including thermostats, barostats, multi-timestepping, and periodic cells, as well as newer methods such as fast extended Lagrangians and high quality electrostatic potential generation. At present M-Chem is a developer friendly environment in which we encourage new software contributors from diverse fields to build their algorithms, models, and methods in our modular framework. The long-term objective of M-Chem is to create an interdisciplinary platform for computational methods with applications ranging from biomolecular simulations, reactive chemistry, to materials research.

14.
J Chem Theory Comput ; 19(10): 2827-2841, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37156013

RESUMO

The pseudopotential (PP) approximation is one of the most common techniques in computational chemistry. Despite its long history, the development of custom PPs has not tracked with the explosion of different density functional approximations (DFAs). As a result, the use of PPs with exchange/correlation models for which they were not developed is widespread, although this practice is known to be theoretically unsound. The extent of PP inconsistency errors (PPIEs) associated with this practice has not been systematically explored across the types of energy differences commonly evaluated in chemical applications. We evaluate PPIEs for a number of PPs and DFAs across 196 chemically relevant systems of both transition-metal and main-group elements, as represented by the W4-11, TMC34, and S22 data sets. Near the complete basis set limit, these PPs are found to cleanly approach all-electron (AE) results for noncovalent interactions but introduce root-mean-squared errors (RMSEs) upwards of 15 kcal mol-1 into predictions of covalent bond energies for a number of popular DFAs. We achieve significant improvements through the use of empirical atom- and DFA-specific PP corrections, indicating considerable systematicity of the PPIEs. The results of this work have implications for chemical modeling in both molecular contexts and for DFA design, which we discuss.

15.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144719

RESUMO

The structural characterization of proteins with a disorder requires a computational approach backed by experiments to model their diverse and dynamic structural ensembles. The selection of conformational ensembles consistent with solution experiments of disordered proteins highly depends on the initial pool of conformers, with currently available tools limited by conformational sampling. We have developed a Generative Recurrent Neural Network (GRNN) that uses supervised learning to bias the probability distributions of torsions to take advantage of experimental data types such as nuclear magnetic resonance J-couplings, nuclear Overhauser effects, and paramagnetic resonance enhancements. We show that updating the generative model parameters according to the reward feedback on the basis of the agreement between experimental data and probabilistic selection of torsions from learned distributions provides an alternative to existing approaches that simply reweight conformers of a static structural pool for disordered proteins. Instead, the biased GRNN, DynamICE, learns to physically change the conformations of the underlying pool of the disordered protein to those that better agree with experiments.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas Intrinsicamente Desordenadas/química
16.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37114707

RESUMO

We developed and implemented a method-independent, fully numerical, finite difference approach to calculating nuclear magnetic resonance shieldings, using gauge-including atomic orbitals. The resulting capability can be used to explore non-standard methods, given only the energy as a function of finite-applied magnetic fields and nuclear spins. For example, standard second-order Møller-Plesset theory (MP2) has well-known efficacy for 1H and 13C shieldings and known limitations for other nuclei such as 15N and 17O. It is, therefore, interesting to seek methods that offer good accuracy for 15N and 17O shieldings without greatly increased compute costs, as well as exploring whether such methods can further improve 1H and 13C shieldings. Using a small molecule test set of 28 species, we assessed two alternatives: κ regularized MP2 (κ-MP2), which provides energy-dependent damping of large amplitudes, and MP2.X, which includes a variable fraction, X, of third-order correlation (MP3). The aug-cc-pVTZ basis was used, and coupled cluster with singles and doubles and perturbative triples [CCSD(T)] results were taken as reference values. Our κ-MP2 results reveal significant improvements over MP2 for 13C and 15N, with the optimal κ value being element-specific. κ-MP2 with κ = 2 offers a 30% rms error reduction over MP2. For 15N, κ-MP2 with κ = 1.1 provides a 90% error reduction vs MP2 and a 60% error reduction vs CCSD. On the other hand, MP2.X with a scaling factor of 0.6 outperformed CCSD for all heavy nuclei. These results can be understood as providing renormalization of doubles amplitudes to partially account for neglected triple and higher substitutions and offer promising opportunities for future applications.

17.
J Phys Chem A ; 127(7): 1760-1774, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36753558

RESUMO

Computational quantum chemistry can be more than just numerical experiments when methods are specifically adapted to investigate chemical concepts. One important example is the development of energy decomposition analysis (EDA) to reveal the physical driving forces behind intermolecular interactions. In EDA, typically the interaction energy from a good-quality density functional theory (DFT) calculation is decomposed into multiple additive components that unveil permanent and induced electrostatics, Pauli repulsion, dispersion, and charge-transfer contributions to noncovalent interactions. Herein, we formulate, implement, and investigate decomposing the forces associated with intermolecular interactions into the same components. The resulting force decomposition analysis (FDA) is potentially useful as a complement to the EDA to understand chemistry, while also providing far more information than an EDA for data analysis purposes such as training physics-based force fields. We apply the FDA based on absolutely localized molecular orbitals (ALMOs) to analyze interactions of water with sodium and chloride ions as well as in the water dimer. We also analyze the forces responsible for geometric changes in carbon dioxide upon adsorption onto (and activation by) gold and silver anions. We also investigate how the force components of an EDA-based force field for water clusters, namely MB-UCB, compare to those from force decomposition analysis.

18.
Proc Natl Acad Sci U S A ; 120(8): e2216480120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791104

RESUMO

The photo-induced radiolysis of water is an elementary reaction in biology and chemistry, forming solvated electrons, OH radicals, and hydronium cations on fast time scales. Here, we use an optical-pump terahertz-probe spectroscopy setup to trigger the photoionization of water molecules with optical laser pulses at ~400 nm and then time-resolve the transient solvent response with broadband terahertz (THz) fields with a ~90 fs time resolution. We observe three distinct spectral responses. The first is a positive broadband mode that can be attributed to an initial diffuse, delocalized electron with a radius of (22 ± 1) Å, which is short lived (<200 fs) because the absorption is blue-shifting outside of the THz range. The second emerging spectroscopic signature with a lifetime of about 150 ps is attributed to an intermolecular mode associated with a mass rearrangement of solvent molecules due to charge separation of radicals and hydronium cations. After 0.2 ps, we observe a long-lasting THz signature with depleted intensity at 110 cm-1 that is well reproduced by ab initio molecular dynamics. We interpret this negative band at 110 cm-1 as the solvent cage characterized by a weakening of the hydrogen bond network in the first and second hydration shells of the cavity occupied by the localized electron.

19.
J Chem Theory Comput ; 19(14): 4689-4700, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-36749957

RESUMO

We consider a generic representation problem of internal coordinates (bond lengths, valence angles, and dihedral angles) and their transformation to 3-dimensional Cartesian coordinates of a biomolecule. We show that the internal-to-Cartesian process relies on correctly predicting chemically subtle correlations among the internal coordinates themselves, and learning these correlations increases the fidelity of the Cartesian representation. We developed a machine learning algorithm, Int2Cart, to predict bond lengths and bond angles from backbone torsion angles and residue types of a protein, which allows reconstruction of protein structures better than using fixed bond lengths and bond angles or a static library method that relies on backbone torsion angles and residue types in a local environment. The method is able to be used for structure validation, as we show that the agreement between Int2Cart-predicted bond geometries and those from an AlphaFold 2 model can be used to estimate model quality. Additionally, by using Int2Cart to reconstruct an IDP ensemble, we are able to decrease the clash rate during modeling. The Int2Cart algorithm has been implemented as a publicly accessible python package at https://github.com/THGLab/int2cart.


Assuntos
Algoritmos , Proteínas , Proteínas/química , Aprendizado de Máquina
20.
J Am Chem Soc ; 145(3): 1826-1834, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633459

RESUMO

Transport mechanisms of solvated protons of 1 M HCl acid pools, confined within reverse micelles (RMs) containing the negatively charged surfactant sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) or the positively charged cetyltrimethylammonium bromide (CTABr), are analyzed with reactive force field simulations to interpret dynamical signatures from TeraHertz absorption and dielectric relaxation spectroscopy. We find that the forward proton hopping events for NaAOT are further suppressed compared to a nonionic RM, while the Grotthuss mechanism ceases altogether for CTABr. We attribute the sluggish proton dynamics for both charged RMs as due to headgroup and counterion charges that expel hydronium and chloride ions from the interface and into the bulk interior, thereby increasing the pH of the acid pools relative to the nonionic RM. For charged NaAOT and CTABr RMs, the localization of hydronium near a counterion or conjugate base reduces the Eigen and Zundel configurations that enable forward hopping. Thus, localized oscillatory hopping dominates, an effect that is most extreme for CTABr in which the proton residence time increases dramatically such that even oscillatory hopping is slow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...