Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 323: 121281, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804563

RESUMO

Ambient fine particulate matter (PM2.5) data were collected in the lower City of Hamilton, Ontario to apportion the sources of this pollutant over an 18-month period. Hamilton has complex topographical features that may result in worsened air pollution within the lower city, thus, dispersion-normalized, multi-time resolution factor analysis (DN-MT-FA) was used to identify and quantify contributions of factors in a manner that reduced the influence of local meteorology. These factors were secondary organic aerosols type 1 (SOA_1), particulate nitrate (pNO3), particulate sulphate (pSO4), primary traffic organic matter (PTOM), Steel/metal processing and vehicular road dust emissions (Steel & Mobile) and, secondary organic aerosols type 2 (SOA_2) with origins ranging from mainly regional to mainly local. Factors that were mainly local (PTOM, Steel & Mobile, SOA_2) contributed up to 17% of the average PM2.5 mass while mixed local/regional factors (pNO3, pSO4) made up 43% on average, indicating the potential for further reduction of harmful PM concentrations locally. Of particular interest from a health protection perspective, was the composition of PM2.5 on days when an exceedance of the 24-hr WHO air quality guideline for this pollutant was observed. In general, SOA_1 was found to drive summer exceedances while pNO3 dominated in the winter. During the summer period, SOA_1 was attributable to wildfires in the northern parts of Canada while local traffic sources in winter contributed to the high levels of pNO3. While local, industrial factors only had minor relative mass contributions during exceedances, they are high in highly oxidized organic species (SOA_2) and toxic metals (Steel & Mobile). Thus, they are likely to have more impacts on human health. The methods and results described in this work will be useful in understanding prevalent sources of particulate matter pollution in the ambient air in the presence of complex topography and meteorological effects.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Material Particulado , Material Particulado/análise , Tamanho da Partícula , Desenvolvimento Industrial , Ontário , Análise Fatorial , Monitoramento Ambiental/métodos , Geografia , Cidades
2.
Sci Total Environ ; 849: 157818, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35940272

RESUMO

Traffic-related air pollutants (TRAP) including nitric oxide (NO), nitrogen oxide (NOx), carbon monoxide (CO), ultrafine particles (UFP), black carbon (BC), and fine particulate matter (PM2.5) were simultaneously measured at near-road sites located at 10 m (NR10) and 150 m (NR150) from the same side of a busy highway to provide insights into the influence of winter time meteorology on exposure to TRAP near major roads. The spatial variabilities of TRAP were examined for ambient temperatures ranging from -11 °C to +19 °C under downwind, upwind, and stagnant air conditions. The downwind TRAP concentrations at NR10 were higher than the upwind concentrations by a factor of 1.4 for CO to 13 for NO. Despite steep downwind reductions of 38 % to 75 % within 150 m, the downwind concentrations at NR150 were still well above upwind concentrations. Near-road concentrations of NOx and UFP increased as ambient temperatures decreased due to elevated emissions of NOx and UFP from vehicles under colder temperatures. Traffic-related PM2.5 sources were identified using hourly PM2.5 chemical components including organic/inorganic aerosol and trace metals at both sites. The downwind concentrations of primary PM2.5 species related to tailpipe and non-tailpipe emissions at NR10 were substantially higher than the upwind concentrations by a factor of 4 and 32, respectively. Traffic-related PM2.5 sources accounted for almost half of total PM2.5 mass under downwind conditions, leading to a rapid change of PM2.5 chemical composition. Under stagnant air conditions, the concentrations of most TRAP and related PM2.5 including tailpipe emissions, secondary nitrate, and organic aerosol were comparable to, or even greater than, the downwind concentrations under windy conditions, especially at NR150. This study demonstrates that stagnant air conditions further widen the traffic-influenced area and people living near major roadways may experience increased risks from elevated exposure to traffic emissions during cold and stagnant winter conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monóxido de Carbono , Monitoramento Ambiental , Humanos , Nitratos , Óxido Nítrico , Óxidos de Nitrogênio/análise , Material Particulado/análise , Emissões de Veículos/análise
3.
Environ Pollut ; 270: 116078, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243539

RESUMO

Industrial metalworking facilities emit a variety of air toxics including volatile organic compounds, polycyclic aromatic hydrocarbons (PAHs) and heavy metals. In order to investigate these emissions, a 1-month multi-instrument field campaign was undertaken at an industrial site in Grande-Synthe, Dunkirk (France), in May and June 2012. One of the main objectives of the study was to provide new information on the chemical composition of particulate matter with aerodynamic diameters smaller than 2.5 µm (PM2.5) in the vicinity of metalworking facilities. An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed to provide size-resolved chemical mixing state measurements of ambient single particles at high temporal resolution. This mixing state information was then used to apportion PM2.5 to local metalworking facilities influencing the receptor site. Periods when the site was influenced by metalworking sources were characterised by a pronounced increase in particles containing toxic metals (manganese, iron, lead) and polycyclic aromatic hydrocarbons (PAHs) with a variety of chemical mixing states. The association of specific particle classes with a nearby ferromanganese alloy manufacturing plant was confirmed through comparison with previous analysis of raw materials (ores) and chimney filter particle samples collected at the facility. Particles associated with emissions from a nearby steelworks were also identified. The contribution of local metalworking activities to PM2.5 at the receptor site for the period when the ATOFMS was deployed ranged from 1 to 65% with an average contribution of 17%, while the remaining mass was attributed to other local and regional sources. These findings demonstrate the impact of metalworking facilities on air quality downwind and provide useful single particle signatures for future source apportionment studies in communities impacted by metalworking emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , França , Tamanho da Partícula , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
4.
Environ Pollut ; 268(Pt A): 115805, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129130

RESUMO

Road traffic emissions are an increasingly important source of particulate matter in urban and non-road environments, where non-tailpipe emissions can contribute substantially to elevated levels of metals associated with adverse health effects. Thus, better characterization and quantification of traffic-emitted metals is warranted. In this study, real-world emission factors for fine particulate metals were determined from hourly x-ray fluorescence measurements over a three-year period (2015-2018) at an urban roadway and busy highway. Inter-site differences and temporal trends in real-world emission factors for metals were explored. The emission factors at both sites were within the range of past studies, and it was found that Ti, Fe, Cu, and Ba emissions were 2.2-3.0 times higher at the highway site, consistent with the higher proportion of heavy-duty vehicles. Weekday emission factors for some metals were also higher by 2.0-3.5 times relative to Sundays for Mn, Zn, Ca, and Fe, illustrating a dependence on fleet composition and roadway activity. Metal emission factors were also inversely related to relative humidity and precipitation, due to reduced road dust resuspension under wetter conditions. Correlation analysis revealed groups of metals that were co-emitted by different traffic activities and sources. Determining emission factors enabled the isolation of traffic-related metal emissions and also revealed that human exposure to metals in ambient air can vary substantially both temporally and spatially depending on fleet composition and traffic volume.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Emissões de Veículos/análise
5.
Sci Total Environ ; 668: 443-456, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852220

RESUMO

In a context where a significant fraction of the population lives near industrial areas, the main objectives of this study are to provide (a) new data on PM2.5 chemical compositions, heavy-metal concentrations and trace gases released by metalworking activities and (b) new information on the near-field evolution (up to about a thousand meters) of such industrial plumes in terms of particle chemical composition and size distribution. For that purpose, a one-month field campaign was performed in an industrial area near the city of Dunkirk (Northern France), combining measurements of atmospheric dynamics and physico-chemical characterization of air masses. Comparisons between several elemental ratios (mainly Mn/Fe), particle size distributions and volatile organic compound (VOC) concentrations at the stacks and at a near-field site suggest that plumes of a ferromanganese alloy plant were quickly mixed with pollutants emitted by other sources (mainly other industries, possibly traffic and sea spray), in particular a neighboring steelworks, before reaching the sampling site. This led to the emergence of secondary particles related to condensation and/or aggregation phenomena inside the plumes. Metalworking emissions were also identified as a source of new particle formation, formed through the emission of gaseous precursors and their fast transformation and condensation, over a timescale of minutes before reaching the near-field site 800 m downwind. Ultrafine particles emitted at the stacks also quickly agglomerated to form larger particles before reaching the near-field site. These results show that, even over short distances, the chemical composition and size distribution of metalworking plumes may evolve rapidly and the characteristics of particles at the boundary of an industrial area (especially in contiguous urban areas) may differ from those emitted directly at the stacks.

6.
Environ Sci Technol ; 52(18): 10580-10589, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30119604

RESUMO

Environmental Protection Agency Method 325 was developed for continuous passive monitoring of volatile organic compounds (VOCs), particularly benzene, at petroleum refinery fencelines. In this work, a modified version of the method was evaluated at an Ontario near-road research station in winter to assess its suitability for urban air quality monitoring. Samples were collected at 24 hour and 14 day resolution to investigate accuracy for different exposure times. Tubes were analyzed by thermal desorption-gas chromatography-mass spectrometry, and 11 VOCs were quantified, including aromatic air toxics. The same VOCs were simultaneously monitored using traditional canister sampling for comparison, and a subset of four were also monitored using a novel miniature gas chromatograph. Good agreement (within 10%) was observed between the 14 day passive tube samples and the canister samples for benzene. However, field-calibrated uptake rates were required to correct passive tube concentrations for less volatile aromatics. Passive tube deployment and analysis is inexpensive; sampling does not require power, and accurate measurements of benzene are demonstrated here for an urban environment. The method is expected to be advantageous for the generation of long-term continuous benzene datasets suitable for epidemiological research with greater spatial coverage than is currently available using traditional monitoring techniques.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Ontário
7.
Environ Sci Technol ; 52(16): 9495-9504, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30021437

RESUMO

A daily integrated emission factor (EF) method was applied to data from three near-road monitoring sites to identify variables that impact traffic related pollutant concentrations in the near-road environment. The sites were operated for 20 months in 2015-2017, with each site differing in terms of design, local meteorology, and fleet compositions. Measurement distance from the roadway and local meteorology were found to affect pollutant concentrations irrespective of background subtraction. However, using emission factors mostly accounted for the effects of dilution and dispersion, allowing intersite differences in emissions to be resolved. A multiple linear regression model that included predictor variables such as fraction of larger vehicles (>7.6 m in length; i.e., heavy-duty vehicles), vehicle speed, and ambient temperature accounted for intersite variability of the fleet average NO, NO x, and particle number EFs (R2:0.50-0.75), with lower model performance for CO and black carbon (BC) EFs (R2:0.28-0.46). NO x and BC EFs were affected more than CO and particle number EFs by the fraction of larger vehicles, which also resulted in measurable weekday/weekend differences. Pollutant EFs also varied with ambient temperature and because there were little seasonal changes in fleet composition, this was attributed to changes in fuel composition and/or post-tailpipe transformation of pollutants.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Monitoramento Ambiental , Fuligem , Emissões de Veículos
8.
Environ Pollut ; 232: 220-228, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28941718

RESUMO

Real-time analysis of volatile organic compounds (VOCs) in air is useful both for source identification and emissions compliance applications. In this work, two complementary triple quadrupole mass spectrometers, fitted with an atmospheric pressure chemical ionization (APCI) and a low pressure chemical ionization (LPCI) source, respectively, were deployed simultaneously to investigate emissions of VOCs associated with an Ontario-based chemical waste disposal facility. Mobile measurements performed upwind and downwind of the facility enabled selection of the best locations for stationary sampling. Seven separate field studies were undertaken between 2000 and 2016 to assess how emissions of VOCs have changed at the site as a function of time. Up to twenty-nine VOCs were successfully identified and quantified using MS/MS in each study. Simultaneous deployment of the two mass spectrometers enabled the detection of polar VOCs including alcohols, esters, amines and ketones as well as non-polar aromatic VOCs including benzene and naphthalene in real time. Concentrations of VOCs were found to decrease significantly in the vicinity of the facility over the sixteen year period, in particular since 2007. Concentration values for each year are compared with odour thresholds and provincial guidelines and implications of future expansion of on-site solid waste landfill volumes are also discussed.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Instalações de Eliminação de Resíduos , Benzeno/análise , Odorantes/análise , Ontário , Eliminação de Resíduos , Espectrometria de Massas em Tandem
9.
Environ Sci Technol ; 51(7): 4081-4090, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28234490

RESUMO

A majority of the ultrafine particles observed in real-world conditions are systematically excluded from many measurements that help to guide regulation of vehicle emissions. To investigate the impact of this exclusion, coincident near-road particle number (PN) emission factors were quantified up- and downstream of a thermodenuder during two seasonal month-long campaigns with wide-ranging ambient temperatures (-19 to +30 °C) to determine the volatile fraction of particles. During colder temperatures (<0 °C), the volatile fraction of particles was 94%, but decreased to 85% during warmer periods (>20 °C). Additionally, mean PN emission factors were a factor of 3.8 higher during cold compared to warm periods. On the basis of 130 000 vehicle plumes including three additional campaigns, fleet mean emission factors were calculated for PN (8.5 × 1014 kg-fuel-1), black carbon (37 mg kg-fuel-1), organic aerosol (51 mg kg-fuel-1), and particle-bound polycyclic aromatic hydrocarbons (0.7 mg kg-fuel-1). These findings demonstrate that significant differences exist between particles in thermally treated vehicle exhaust as compared to in real-world vehicle plumes to which populations in near-road environments are actually exposed. Furthermore, the magnitude of these differences are dependent upon season and may be more extreme in colder climates.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Aerossóis , Monitoramento Ambiental , Tamanho da Partícula , Temperatura , Volatilização
10.
Faraday Discuss ; 189: 547-66, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27108651

RESUMO

Air quality models are used to simulate and forecast pollutant concentrations, from continental scales to regional and urban scales. These models usually assume that particles are internally mixed, i.e. particles of the same size have the same chemical composition, which may vary in space and time. Although this assumption may be realistic for continental-scale simulations, where particles originating from different sources have undergone sufficient mixing to achieve a common chemical composition for a given model grid cell and time, it may not be valid for urban-scale simulations, where particles from different sources interact on shorter time scales. To investigate the role of the mixing state assumption on the formation of particles, a size-composition resolved aerosol model (SCRAM) was developed and coupled to the Polyphemus air quality platform. Two simulations, one with the internal mixing hypothesis and another with the external mixing hypothesis, have been carried out for the period 15 January to 11 February 2010, when the MEGAPOLI winter field measurement campaign took place in Paris. The simulated bulk concentrations of chemical species and the concentrations of individual particle classes are compared with the observations of Healy et al. (Atmos. Chem. Phys., 2013, 13, 9479-9496) for the same period. The single particle diversity and the mixing-state index are computed based on the approach developed by Riemer et al. (Atmos. Chem. Phys., 2013, 13, 11423-11439), and they are compared to the measurement-based analyses of Healy et al. (Atmos. Chem. Phys., 2014, 14, 6289-6299). The average value of the single particle diversity, which represents the average number of species within each particle, is consistent between simulation and measurement (2.91 and 2.79 respectively). Furthermore, the average value of the mixing-state index is also well represented in the simulation (69% against 59% from the measurements). The spatial distribution of the mixing-state index shows that the particles are not mixed in urban areas, while they are well mixed in rural areas. This indicates that the assumption of internal mixing traditionally used in transport chemistry models is well suited to rural areas, but this assumption is less realistic for urban areas close to emission sources.

11.
Environ Sci Technol ; 50(4): 2035-43, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26794244

RESUMO

Four field campaigns were conducted between February 2014 and January 2015 to measure emissions from light-duty gasoline direct injection (GDI) vehicles (2013 Ford Focus) in an urban near-road environment in Toronto, Canada. Measurements of CO2, CO, NOx, black carbon (BC), benzene, toluene, ethylbenzene-xylenes (BTEX), and size-resolved particle number (PN) were recorded 15 m from the roadway and converted to fuel-based emission factors (EFs). Other than for NOx and CO, the GDI engine had elevated emissions compared to the Toronto fleet, with BC EFs in the 73rd percentile, BTEX EFs in the 80-90th percentile, and PN EFs in the 75th percentile during wintertime measurements. Additionally, for three campaigns, a second platform for measuring PN and CO2 was placed 1.5-3 m from the roadway to quantify changes in PN with distance from point of emission. GDI vehicle PN EFs were found to increase by up to 240% with increasing distance from the roadway, predominantly due to an increasing fraction of sub-40 nm particles. PN and BC EFs from the same engine technology were also measured in the laboratory. BC EFs agreed within 20% between the laboratory and real-world measurements; however, laboratory PN EFs were an order of magnitude lower due to exhaust conditioning.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Veículos Automotores , Emissões de Veículos/análise , Canadá , Dióxido de Carbono/análise , Gasolina , Óxidos de Nitrogênio/análise , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Fuligem/análise , Análise Espaço-Temporal
12.
J Phys Chem A ; 119(45): 11170-81, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26472257

RESUMO

The chlorine atom (Cl)-initiated oxidation of three polycyclic aromatic hydrocarbons (PAHs; namely, naphthalene, acenaphthylene, and acenaphthene) was investigated. Experiments were performed in an atmospheric simulation chamber using a proton transfer reaction time-of-flight mass spectrometer (TOF-MS) and an aerosol TOF-MS to characterize the oxidation products in the gas and particle phases, respectively. The major products identified from the reaction of Cl atoms with naphthalene were phthalic anhydride and chloronaphthalene, indicating that H atom abstraction and Cl addition reaction pathways are both important. Acenaphthenone was the principal product arising from reaction of Cl with acenaphthene, while 1,8-naphthalic anhydride, acenaphthenone, acenaphthenequinone, and chloroacenaphthenone were all identified as products of acenaphthylene oxidation, confirming that the cylcopenta-fused ring controls the reactivity of these PAHs toward Cl atoms. Possible reaction mechanisms are proposed for the formation of these products, and favored pathways have been suggested. Large yields of secondary organic aerosol (SOA) were also observed in all experiments, and the major products were found to undergo significant partitioning to the particle-phase. This work suggests that Cl-initiated oxidation could play an important role in SOA formation from PAHs under specific atmospheric conditions where the Cl atom concentration is high, such as the marine boundary layer.

13.
Environ Sci Technol ; 49(6): 3330-40, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25695365

RESUMO

Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Veículos Automotores , Material Particulado/análise , Aerossóis/análise , Compostos de Amônio/análise , Carbono/análise , Análise por Conglomerados , Monitoramento Ambiental/estatística & dados numéricos , Humanos , Londres , Espectrometria de Massas , Compostos Orgânicos/análise , Tamanho da Partícula , Urbanização
14.
Anal Bioanal Chem ; 407(20): 5899-909, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25146355

RESUMO

Alkylamines are associated with both natural and anthropogenic sources and have been detected in ambient aerosol in a variety of environments. However, little is known about the ubiquity or relative abundance of these species in Europe. In this work, ambient single-particle mass spectra collected at five sampling sites across Europe have been analysed for their alkylamine content. The aerosol time-of-flight mass spectrometer (ATOFMS) data used were collected in Ireland (Cork), France (Paris, Dunkirk and Corsica) and Switzerland (Zurich) between 2008 and 2013. Each dataset was queried for mass spectral marker ions associated with the following ambient alkylamines: dimethylamine (DMA), trimethylamine (TMA), diethylamine (DEA), triethylamine (TEA), dipropylamine (DPA) and tripropylamine (TPA). The fraction of ambient particles that contained detectable alkylamines ranged from 1 to 17 % depending on location, with the highest fractions observed in Paris and Zurich in the winter months. The lowest fractions were observed at coastal sites, where the influence of animal husbandry-related alkylamine emissions is also expected to be lowest. TMA was the most ubiquitous particle phase alkylamine detected and was observed at all locations. Alkylamines were found to be internally mixed with both sulphate and nitrate for each dataset, suggesting that aminium salt formation may be important at all sites investigated. Interestingly, in Corsica, all alkylamine particles detected were also found to be internally mixed with methanesulphonic acid (MSA), indicating that aminium methanesulphonate salts may represent a component of marine ambient aerosol in the summer months. Internal mixing of alkylamines with sea salt was not observed, however. Alkylamine-containing particle composition was found to be reasonably homogeneous at each location, with the exception of the Corsica and Dunkirk sites, where two and four distinct mixing states were observed, respectively.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Dietilaminas/análise , Dimetilaminas/análise , Etilaminas/análise , Metilaminas/análise , Propilaminas/análise , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Espectrometria de Massas/métodos , Tamanho da Partícula , Estações do Ano , Sulfatos/análise
15.
Sci Total Environ ; 493: 197-208, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24950495

RESUMO

The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic aerosol factor (AMS_PMF_COA) to oxidized organic aerosol, chloride and locally produced nitrate, indicating that AMS_PMF_COA cannot be attributed to primary cooking emissions only. Overall, there are clear benefits from factor analysis applied to results obtained from multiple techniques, which allows better association of aerosols with sources and atmospheric processes.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cidades , Irlanda , Material Particulado/análise
16.
J Phys Chem A ; 118(20): 3535-40, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24746347

RESUMO

Reactions of polycyclic aromatic hydrocarbons (PAHs) with chlorine atoms may occur in specific areas such as coastal regions and the marine boundary layer. In this work, rate constants for the gas-phase reactions of naphthalene, acenaphthene, and acenaphthylene with chlorine atoms have been measured using the relative rate technique. Experiments were performed at room temperature (293 ± 2 K) and atmospheric pressure in an atmospheric simulation chamber using a proton-transfer reaction mass spectrometer (PTR-MS) to monitor the concentrations of PAHs and the reference compounds (acetone, methanol, 1,3,5-trimethylbenzene, and isoprene) as a function of time. The rate constants obtained in this work were (in units of cm(3) molecule(-1) s(-1)) (4.22 ± 0.46) × 10(-12), (3.01 ± 0.82) × 10(-10), and (4.69 ± 0.82) × 10(-10) for naphthalene, acenaphthene, and acenaphthylene, respectively. These are the first measurements of the rate constants for gas-phase reactions of Cl atoms with acenaphthene and acenaphthylene. The rate constant determined in this study for the reaction of naphthalene with Cl atoms is not in agreement with the only other previously reported value in the literature. The results are used to assess the potential role of chlorine atom reactions in the atmospheric oxidation of PAHs.

17.
Faraday Discuss ; 165: 447-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24601017

RESUMO

Recent laboratory and modelling studies have shown that reactive uptake of low molecular weight alpha-dicarbonyls such as glyoxal (GLY) by aerosols is a potentially significant source of secondary organic aerosol (SOA). However, previous studies disagree in the magnitude of the uptake of GLY, the mechanism involved and the physicochemical factors affecting particle formation. In this study, the chemistry of GLY with ammonium sulfate (AS) in both bulk laboratory solutions and in aerosol particles is investigated. For the first time, Aerosol Time of Flight Mass Spectrometry (ATOFMS), a single particle technique, is used together with offline (ESI-MS and LC-MS2) mass spectrometric techniques to investigate the change in composition of bulk solutions of GLY and AS resulting from aqueous photooxidation by OH and from ageing of the solutions in the dark. The mass spectral ions obtained in these laboratory studies were used as tracers of GLY uptake and chemistry in AS seed particles in a series of experiments carried out under dark and natural irradiated conditions at the outdoor European Photo-reactor (EUPHORE). Glyoxal oligomers formed were not detected by the ATOFMS, perhaps due to inefficient absorption at the laser wavelength. However, the presence of organic nitrogen compounds, formed by reaction of GLY with ammonia was confirmed, resulting in an increase in the absorption efficiency of the aerosol, and this increased the number of particles successfully ionised by the ATOFMS. A number of light absorbing organic nitrogen species, including 1H-imidazole, 1H-imidazole-2-carboxaldehyde, 2,2'-bis-imidazole and a glyoxal substituted 2,2'-bisimidazole, previously identified in aqueous laboratory solutions, were also identified in chamber aerosol and formed on atmospherically relevant timescales. An additional compound, predicted to be 1,2,5-oxadiazole, had an enhanced formation rate when the chamber was open and is predicted to be formed via a light activated pathway involving radical oxidation of ammonia to hydroxylamine, followed by subsequent reaction with glyoxal to form an intermediate glyoxime.


Assuntos
Aerossóis/química , Sulfato de Amônio/química , Glioxal/química , Espectrometria de Massas/métodos , Oxirredução
18.
Environ Sci Technol ; 46(21): 11813-20, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23013142

RESUMO

The chemical composition of secondary organic aerosol (SOA) formed from the photolysis of 1-nitronaphthalene in a series of simulation chamber experiments has been investigated using an aerosol time-of-flight mass spectrometer (ATOFMS). The resulting SOA is characterized by the presence of a dimer (286 Da) proposed to be formed through the self-reaction of naphthoxy radicals along with the expected product nitronaphthol. The molecular formulas of the SOA products were confirmed by collecting filter samples and analyzing the extracts using ultrahigh resolution mass spectrometry. Further evidence for the radical self-reaction mechanism was obtained by photolyzing 1-nitronaphthalene in the presence of excess nitrobenzene, where it was shown that the resulting SOA contained a product consistent with the cross-reaction of phenoxy and naphthoxy radicals. The naphthoxy dimer was formed from the photolysis of 1-nitronaphthalene under a variety of different experimental conditions including the presence of excess butyl ether as an OH scavenger and the presence of ambient air and particles. However, formation of the dimer was suppressed when 1-nitronaphthalene was photolyzed in the presence of excess NO and nitronaphthol was instead found to be the dominant particle-phase product indicating that the yield of the dimer is dependent upon the concentration of pre-existing NO(x). The results of this work suggest that photolysis of 1-nitronaphthalene represents a previously unidentified pathway to SOA formation in the troposphere. Analogous mechanisms may also be important for other nitrated polycyclic aromatic hydrocarbons.


Assuntos
Poluentes Atmosféricos/química , Radicais Livres/química , Naftalenos/química , Aerossóis , Espectrometria de Massas/métodos , Fotólise
19.
Environ Sci Technol ; 45(22): 9649-57, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22007606

RESUMO

The photolysis of o-tolualdehyde by natural sunlight has been investigated at the large outdoor European Photoreactor (EUPHORE) in Valencia, Spain. The photolysis rate coefficient was measured directly under different solar flux levels, with values in the range j(o-tolualdehyde) = (1.62-2.15) × 10(-4) s(-1) observed, yielding an average value of j(o-tolualdehyde)/j(NO(2)) = (2.53 ± 0.25) × 10(-2). The estimated photolysis lifetime is 1-2 h, confirming that direct photolysis by sunlight is the major atmospheric degradation pathway for o-tolualdehyde. Published UV absorption cross-section data were used to derive an effective quantum yield (290-400 nm) close to unity, within experimental error. Possible reaction pathways for the formation of the major photolysis products, benzocyclobutenol (tentatively identified) and o-phthalaldehyde, are proposed. Appreciable yields (5-13%) of secondary organic aerosol (SOA) were observed at EUPHORE and also during supplementary experiments performed in an indoor chamber using an artificial light source. Off-line analysis by gas chromatography-mass spectrometry allowed identification of o-phthalaldehyde, phthalide, phthalic anhydride, o-toluic acid, and phthalaldehydic acid in the particle phase.


Assuntos
Atmosfera/química , Benzaldeídos/química , Fotólise , Espanha , Luz Solar
20.
Sci Total Environ ; 409(11): 2143-55, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21420721

RESUMO

PM(2.5) samples collected at Cork Harbour, Ireland during summer, autumn, late autumn and winter, 2008-2009 were analyzed for polar organic compounds that are useful markers for aerosol source characterization. The determined compounds include tracers for biomass burning primary particles, fungal spores, markers for secondary organic aerosol (SOA) from isoprene, α-/ß-pinene, and d-limonene. Seasonal and temporal variations and other characteristic features of the detected tracers are discussed in terms of aerosol sources and processes. The biogenic species were detected only during the summer period where the contributions of isoprene SOA and fungal spores to the PM(2.5) organic carbon (OC) were estimated to be 1.6% and 1% respectively. The biomass burning markers, and in particular levoglucosan, were present in all samples and attributed to the combustion of cellulose-containing fuels including wood, peat, bituminous and smokeless coal. The contribution of domestic solid fuel (DSF) burning to the measured OC mass concentration was estimated at 10.8, 50, 66.4 and 74.9% for summer, autumn, late autumn and winter periods, respectively, based on factors derived from a series of burning experiments on locally available fuels. Application of an alternative approach, namely principal component analysis-multiple linear regression (PCA-MLR), to the measured concentrations of the polar organic marker compounds used in conjunction with real-time air quality data provided similar trends and estimates for DSF combustion during all seasons except summer. This study clearly demonstrates that, despite the ban on the sale of bituminous coal in Cork and other large urban areas in Ireland, DSF combustion is still the major source of OC during autumn and winter periods and also makes a significant contribution to PM(2.5) levels. The developed marker approach for estimating the contribution of DSF combustion to ambient OC concentrations can, in principle, also be applied to other locations.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Terpenos/análise , Microbiologia do Ar , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Compostos Bicíclicos com Pontes/química , Butadienos/análise , Butadienos/química , Carbono/química , Cicloexenos/análise , Cicloexenos/química , Fontes Geradoras de Energia/estatística & dados numéricos , Incêndios , Combustíveis Fósseis/análise , Combustíveis Fósseis/estatística & dados numéricos , Hemiterpenos/análise , Hemiterpenos/química , Irlanda , Limoneno , Monoterpenos/análise , Monoterpenos/química , Material Particulado/química , Pentanos/análise , Pentanos/química , Centrais Elétricas , Estações do Ano , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...