Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559194

RESUMO

In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.

2.
Mol Oncol ; 18(2): 245-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135904

RESUMO

Analyses of inequalities related to prevention and cancer therapeutics/care show disparities between countries with different economic standing, and within countries with high Gross Domestic Product. The development of basic technological and biological research provides clinical and prevention opportunities that make their implementation into healthcare systems more complex, mainly due to the growth of Personalized/Precision Cancer Medicine (PCM). Initiatives like the USA-Cancer Moonshot and the EU-Mission on Cancer and Europe's Beating Cancer Plan are initiated to boost cancer prevention and therapeutics/care innovation and to mitigate present inequalities. The conference organized by the Pontifical Academy of Sciences in collaboration with the European Academy of Cancer Sciences discussed the inequality problem, dependent on the economic status of a country, the increasing demands for infrastructure supportive of innovative research and its implementation in healthcare and prevention programs. Establishing translational research defined as a coherent cancer research continuum is still a challenge. Research has to cover the entire continuum from basic to outcomes research for clinical and prevention modalities. Comprehensive Cancer Centres (CCCs) are of critical importance for integrating research innovations to preclinical and clinical research, as for ensuring state-of-the-art patient care within healthcare systems. International collaborative networks between CCCs are necessary to reach the critical mass of infrastructures and patients for PCM research, and for introducing prevention modalities and new treatments effectively. Outcomes and health economics research are required to assess the cost-effectiveness of new interventions, currently a missing element in the research portfolio. Data sharing and critical mass are essential for innovative research to develop PCM. Despite advances in cancer research, cancer incidence and prevalence is growing. Making cancer research infrastructures accessible for all patients, considering the increasing inequalities, requires science policy actions incentivizing research aimed at prevention and cancer therapeutics/care with an increased focus on patients' needs and cost-effective healthcare.


Assuntos
Neoplasias , Humanos , Cidade do Vaticano , Neoplasias/prevenção & controle , Pesquisa Translacional Biomédica , Atenção à Saúde , Medicina de Precisão
3.
Cell Rep ; 42(9): 113132, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708024

RESUMO

Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM.


Assuntos
Melanoma , Multiômica , Humanos , Melanoma/patologia , Melanócitos/metabolismo , DNA , Antígenos de Neoplasias/genética
4.
Nat Struct Mol Biol ; 30(8): 1216-1223, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291424

RESUMO

Subnuclear compartmentalization has been proposed to play an important role in gene regulation by segregating active and inactive parts of the genome in distinct physical and biochemical environments. During X chromosome inactivation (XCI), the noncoding Xist RNA coats the X chromosome, triggers gene silencing and forms a dense body of heterochromatin from which the transcription machinery appears to be excluded. Phase separation has been proposed to be involved in XCI, and might explain the exclusion of the transcription machinery by preventing its diffusion into the Xist-coated territory. Here, using quantitative fluorescence microscopy and single-particle tracking, we show that RNA polymerase II (RNAPII) freely accesses the Xist territory during the initiation of XCI. Instead, the apparent depletion of RNAPII is due to the loss of its chromatin stably bound fraction. These findings indicate that initial exclusion of RNAPII from the inactive X reflects the absence of actively transcribing RNAPII, rather than a consequence of putative physical compartmentalization of the inactive X heterochromatin domain.


Assuntos
RNA Polimerase II , RNA Longo não Codificante , RNA Polimerase II/metabolismo , Heterocromatina , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Cromatina , RNA não Traduzido/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Nucleic Acids Res ; 51(5): 2177-2194, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36727460

RESUMO

X chromosome inactivation (XCI) is an essential process, yet it initiates with remarkable diversity in various mammalian species. XIST, the main trigger of XCI, is controlled in the mouse by an interplay of lncRNA genes (LRGs), some of which evolved concomitantly to XIST and have orthologues across all placental mammals. Here, we addressed the functional conservation of human orthologues of two such LRGs, FTX and JPX. By combining analysis of single-cell RNA-seq data from early human embryogenesis with various functional assays in matched human and mouse pluripotent stem- or differentiated post-XCI cells, we demonstrate major functional differences for these orthologues between species, independently of primary sequence conservation. While the function of FTX is not conserved in humans, JPX stands as a major regulator of XIST expression in both species. However, we show that different entities of JPX control the production of XIST at various steps depending on the species. Altogether, our study highlights the functional versatility of LRGs across evolution, and reveals that functional conservation of orthologous LRGs may involve diversified mechanisms of action. These findings represent a striking example of how the evolvability of LRGs can provide adaptative flexibility to constrained gene regulatory networks.


Assuntos
Placenta , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Camundongos , Animais , Placenta/metabolismo , Inativação do Cromossomo X/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Mamíferos/genética , Embrião de Mamíferos/metabolismo
6.
Trends Plant Sci ; 28(5): 537-543, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740490

RESUMO

Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.


Assuntos
Agricultura , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Plantas , Mudança Climática , Efeito Estufa
7.
Nat Cell Biol ; 25(1): 134-144, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36635505

RESUMO

In female mammals, one of the two X chromosomes becomes inactivated during development by X-chromosome inactivation (XCI). Although Polycomb repressive complex (PRC) 1 and PRC2 have both been implicated in gene silencing, their exact roles in XCI during in vivo development have remained elusive. To this end, we have studied mouse embryos lacking either PRC1 or PRC2. Here we demonstrate that the loss of either PRC has a substantial impact on maintenance of gene silencing on the inactive X chromosome (Xi) in extra-embryonic tissues, with overlapping yet different genes affected, indicating potentially independent roles of the two complexes. Importantly, a lack of PRC1 does not affect PRC2/H3K27me3 accumulation and a lack of PRC2 does not impact PRC1/H2AK119ub1 accumulation on the Xi. Thus PRC1 and PRC2 contribute independently to the maintenance of XCI in early post-implantation extra-embryonic lineages, revealing that both Polycomb complexes can be directly involved and differently deployed in XCI.


Assuntos
Complexo Repressor Polycomb 1 , Inativação do Cromossomo X , Feminino , Camundongos , Animais , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Inativação do Cromossomo X/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Cromossomo X/genética , Cromossomo X/metabolismo , Mamíferos/metabolismo
8.
J Vis Exp ; (188)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36314814

RESUMO

The spatial organization of the genome contributes to its function and regulation in many contexts, including transcription, replication, recombination, and repair. Understanding the exact causality between genome topology and function is therefore crucial and increasingly the subject of intensive research. Chromosome conformation capture technologies (3C) allow inferring the 3D structure of chromatin by measuring the frequency of interactions between any region of the genome. Here we describe a fast and simple protocol to perform Capture Hi-C, a 3C-based target enrichment method that characterizes the allele-specific 3D organization of megabased-sized genomic targets at high-resolution. In Capture Hi-C, target regions are captured by an array of biotinylated probes before downstream high-throughput sequencing. Thus, higher resolution and allele-specificity are achieved while improving the time-effectiveness and affordability of the technology. To demonstrate its strengths, the Capture Hi-C protocol was applied to the mouse X-inactivation center (Xic), the master regulatory locus of X-chromosome inactivation (XCI).


Assuntos
Cromatina , Cromossomos , Camundongos , Animais , Mapeamento Cromossômico/métodos , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos
9.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35502750

RESUMO

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina , Comunicação , Expressão Gênica , Genoma , Camundongos , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética
10.
Cell ; 185(12): 2164-2183.e25, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597241

RESUMO

X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.


Assuntos
Complexo Mediador/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/metabolismo , Diferenciação Celular , Epigênese Genética , Humanos , RNA Longo não Codificante/genética , Inativação do Cromossomo X
11.
PLoS Biol ; 20(4): e3001623, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35452449

RESUMO

Molecular biology holds a vast potential for tackling climate change and biodiversity loss. Yet, it is largely absent from the current strategies. We call for a community-wide action to bring molecular biology to the forefront of climate change solutions.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Biologia Molecular
12.
Nature ; 601(7891): 9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980923
13.
Nat Rev Mol Cell Biol ; 23(4): 231-249, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35013589

RESUMO

X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.


Assuntos
Epigênese Genética , RNA Longo não Codificante , Epigênese Genética/genética , Feminino , Inativação Gênica , Humanos , Masculino , RNA Longo não Codificante/genética , Cromossomo X/genética , Inativação do Cromossomo X/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-34312245

RESUMO

In female eutherian mammals, dosage compensation of X-linked gene expression is achieved during development through transcriptional silencing of one of the two X chromosomes. Following X chromosome inactivation (XCI), the inactive X chromosome remains faithfully silenced throughout somatic cell divisions. XCI is dependent on Xist, a long noncoding RNA that coats and silences the X chromosome from which it is transcribed. Xist coating triggers a cascade of chromosome-wide changes occurring at the levels of transcription, chromatin composition, chromosome structure, and spatial organization within the nucleus. XCI has emerged as a paradigm for the study of such crucial nuclear processes and the dissection of their functional interplay. In the past decade, the advent of tools to characterize and perturb these processes have provided an unprecedented understanding into their roles during XCI. The mechanisms orchestrating the initiation of XCI as well as its maintenance are thus being unraveled, although many questions still remain. Here, we introduce key aspects of the XCI process and review the recent discoveries about its molecular basis.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , Núcleo Celular/metabolismo , Mecanismo Genético de Compensação de Dose , Feminino , Mamíferos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
16.
Nat Commun ; 12(1): 7000, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853312

RESUMO

At initiation of X chromosome inactivation (XCI), Xist is monoallelically upregulated from the future inactive X (Xi) chromosome, overcoming repression by its antisense transcript Tsix. Xist recruits various chromatin remodelers, amongst them SPEN, which are involved in silencing of X-linked genes in cis and establishment of the Xi. Here, we show that SPEN plays an important role in initiation of XCI. Spen null female mouse embryonic stem cells (ESCs) are defective in Xist upregulation upon differentiation. We find that Xist-mediated SPEN recruitment to the Xi chromosome happens very early in XCI, and that SPEN-mediated silencing of the Tsix promoter is required for Xist upregulation. Accordingly, failed Xist upregulation in Spen-/- ESCs can be rescued by concomitant removal of Tsix. These findings indicate that SPEN is not only required for the establishment of the Xi, but is also crucial in initiation of the XCI process.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Inativação do Cromossomo X , Animais , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Ligados ao Cromossomo X , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Regiões Promotoras Genéticas , Ativação Transcricional , Transcriptoma , Regulação para Cima
17.
Cell ; 184(25): 6174-6192.e32, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34813726

RESUMO

The lncRNA Xist forms ∼50 diffraction-limited foci to transcriptionally silence one X chromosome. How this small number of RNA foci and interacting proteins regulate a much larger number of X-linked genes is unknown. We show that Xist foci are locally confined, contain ∼2 RNA molecules, and nucleate supramolecular complexes (SMACs) that include many copies of the critical silencing protein SPEN. Aggregation and exchange of SMAC proteins generate local protein gradients that regulate broad, proximal chromatin regions. Partitioning of numerous SPEN molecules into SMACs is mediated by their intrinsically disordered regions and essential for transcriptional repression. Polycomb deposition via SMACs induces chromatin compaction and the increase in SMACs density around genes, which propagates silencing across the X chromosome. Our findings introduce a mechanism for functional nuclear compartmentalization whereby crowding of transcriptional and architectural regulators enables the silencing of many target genes by few RNA molecules.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Longo não Codificante/metabolismo , Cromossomo X/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias , Fibroblastos , Inativação Gênica , Humanos , Camundongos , Ligação Proteica , Inativação do Cromossomo X
18.
Ann N Y Acad Sci ; 1506(1): 118-141, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34791665

RESUMO

The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.


Assuntos
Congressos como Assunto/tendências , Epigênese Genética/genética , Marcação de Genes/tendências , RNA não Traduzido/administração & dosagem , RNA não Traduzido/genética , Relatório de Pesquisa , Animais , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Marcação de Genes/métodos , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/genética , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/administração & dosagem , Pequeno RNA não Traduzido/genética , Transdução de Sinais/genética
19.
Science ; 374(6570): 942-943, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793229

RESUMO

Characterizing X chromosome inactivation in nonhuman primates reveals some surprises.


Assuntos
Inativação do Cromossomo X
20.
Nat Commun ; 12(1): 5330, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504093

RESUMO

Most autosomal genes are thought to be expressed from both alleles, with some notable exceptions, including imprinted genes and genes showing random monoallelic expression (RME). The extent and nature of RME has been the subject of debate. Here we investigate the expression of several candidate RME genes in F1 hybrid mouse cells before and after differentiation, to define how they become persistently, monoallelically expressed. Clonal monoallelic expression is not present in embryonic stem cells, but we observe high frequencies of monoallelism in neuronal progenitor cells by assessing expression status in more than 200 clones. We uncover unforeseen modes of allelic expression that appear to be gene-specific and epigenetically regulated. This non-canonical allelic regulation has important implications for development and disease, including autosomal dominant disorders and opens up therapeutic perspectives.


Assuntos
Alelos , Desequilíbrio Alélico , Epigênese Genética , Doenças Musculares/genética , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/genética , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Diferenciação Celular , Quimera , Células Clonais , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Dosagem de Genes , Frequência do Gene , Loci Gênicos , Impressão Genômica , Masculino , Camundongos , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neurais/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Receptor de GluK2 Cainato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...