Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 29(11): 531-540, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578884

RESUMO

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin-ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.

2.
J Biol Chem ; 279(49): 51315-22, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15342647

RESUMO

The B-subunit component of Escherichia coli heat-labile enterotoxin (EtxB), which binds to cell surface GM1 ganglioside receptors, was recently shown to be a highly effective vehicle for delivery of conjugated peptides into the major histocompatibility complex (MHC) class I pathway. In this study we have investigated the pathway of epitope delivery. The peptides used contained the epitope either located at the C terminus or with a C-terminal extension. Pretreatment of cells with cholesterol-disrupting agents blocked transport of EtxB conjugates to the Golgi/endoplasmic reticulum, but did not affect EtxB-mediated MHC class I presentation. Under these conditions, EtxB conjugates entered EEA1-positive early endosomes where peptides were cleaved and translocated into the cytosol. Endosome acidification was required for epitope presentation. Purified 20 S immunoproteasomes were able to generate the epitope from peptides in vitro, but 26 S proteasomes were not. Only presentation from the C-terminal extended peptide was proteasome-dependent in cells, and this was found to be significantly slower than presentation from peptides with the epitope at the C terminus. These results implicate the proteasome in the generation of the correct C terminus of the epitope and are consistent with proteasome-independent N-terminal trimming. Epitope presentation was blocked in a TAP-deficient cell line, providing further evidence that conjugated peptides enter the cytosol as well as demonstrating a requirement for the peptide transporter. Our findings demonstrate the utility of EtxB-mediated peptide delivery for rapid and efficient loading of MHC class I epitopes in several different cell types. Conjugated peptides are released from early endosomes into the cytosol where they gain access to proteasomes and TAP in the "classical" pathway of class I presentation.


Assuntos
Enterotoxinas/química , Complexo Principal de Histocompatibilidade , Peptídeos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Antibacterianos/farmacologia , Apresentação de Antígeno , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , Cromatografia Líquida de Alta Pressão , Citosol/metabolismo , Células Dendríticas/citologia , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Epitopos/química , Escherichia coli/metabolismo , Filipina/farmacologia , Complexo de Golgi/metabolismo , Caranguejos Ferradura/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Fagocitose , Inibidores de Proteases/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Tempo , Vibrio/metabolismo , beta-Ciclodextrinas/farmacologia
3.
Curr Protein Pept Sci ; 5(3): 153-61, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15180520

RESUMO

Proteasomes are the major nonlysosomal protein degradation machinery in eukaryotic cells and they are largely responsible for the processing of antigens for presentation by the MHC class I pathway. This review concentrates on recent developments in the area of antigen processing. Specialized proteasomes called immunoproteasomes and an 11S regulator of proteasomes (PA28) are induced by interferon-gamma, but it is not entirely clear why changes in proteasome structure are beneficial for antigen presentation. Different proteasome complexes have distinct subcellular distributions and subtle differences in cleavage specificity. Thus it is likely that the efficiency of production of MHC class I binding peptides varies in different locations. Immunoproteasome subunits are enriched at the ER where TAP transports peptides for association with newly synthesized MHC class I molecules. There is recent evidence to suggest that antigen presentation from viral expression vectors, or from peptides that are either delivered by bacterial toxins or derived from signal peptides, require proteasome activity for generation of the correct C-terminus of the epitope. The correct N-terminus may be generated by recently identified ER associated aminopeptidases. A number of viral protein interactions with proteasome subunits have been reported and such interactions may interfere with host anti-viral defenses and also contribute to mechanisms of cell transformation.


Assuntos
Apresentação de Antígeno/imunologia , Cisteína Endopeptidases/imunologia , Complexos Multienzimáticos/imunologia , Animais , Toxinas Bacterianas/imunologia , Humanos , Interferon gama/imunologia , Complexo de Endopeptidases do Proteassoma , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
4.
Infect Immun ; 71(3): 1527-37, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12595472

RESUMO

The homopentameric B-subunit components of Escherichia coli heat-labile enterotoxin (EtxB) and cholera toxin (CtxB) possess the capacity to enter mammalian cells and to activate cell-signaling events in leukocytes that modulate immune cell function. Both properties have been attributed to the ability of the B subunits to bind to GM1-ganglioside receptors, a ubiquitous glycosphingolipid found in the plasma membrane. Here we describe the properties of EtxB(H57S), a mutant B subunit with a His-->Ser substitution at position 57. The mutant was found to be severely defective in inducing leukocyte signaling, as shown by failure to (i) trigger caspase 3-mediated CD8(+)-T-cell apoptosis, (ii) activate nuclear translocation of NF-kappaB in Jurkat T cells, (iii) induce a potent anti-B-subunit response in mice, or (iv) serve as a mucosal adjuvant. However, its GM1 binding, cellular uptake, and delivery functions remained intact. This was further validated by the finding that EtxB(H57S) was as effective as EtxB in delivering a conjugated model class I epitope into the major histocompatibility complex class I pathway of a dendritic cell line. These observations imply that GM1 binding alone is not sufficient to trigger the signaling events responsible for the potent immunomodulatory properties of EtxB. Moreover, they demonstrate that its signaling properties play no role in EtxB uptake and trafficking. Thus, EtxB(H57S) represents a novel tool for evaluating the complex cellular interactions and signaling events occurring after receptor interaction, as well as offering an alternative means of delivering attached peptides in the absence of the potent immunomodulatory signals induced by wild-type B subunits.


Assuntos
Adjuvantes Imunológicos/farmacologia , Toxinas Bacterianas/farmacologia , Enterotoxinas/farmacologia , Proteínas de Escherichia coli , Toxoides/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Apoptose , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Enterotoxinas/química , Enterotoxinas/metabolismo , Feminino , Gangliosídeo G(M1)/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , NF-kappa B/metabolismo , Transporte Proteico , Relação Estrutura-Atividade
5.
Infect Immun ; 70(6): 3249-58, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12011020

RESUMO

Current immunization strategies, using peptide or protein antigens, generally fail to elicit cytotoxic-T-lymphocyte responses, since these antigens are unable to access intracellular compartments where loading of major histocompatibility complex class I (MHC-I) molecules occurs. In an attempt to circumvent this, we investigated whether the GM1 receptor-binding B subunit of Escherichia coli heat-labile toxin (EtxB) could be used to deliver class I epitopes. When a class I epitope was conjugated to EtxB, it was delivered into the MHC-I presentation pathway in a GM1-binding-dependent fashion and resulted in the appearance of MHC-I-epitope complexes at the cell surface. Importantly, we show that the efficiency of EtxB-mediated epitope delivery could be strikingly enhanced by incorporating, adjacent to the class I epitope, a 10-amino-acid segment from the C terminus of the DNA polymerase (Pol) of herpes simplex virus. The replacement of this 10-amino-acid segment by a heterologous sequence or the introduction of specific amino acid substitutions within this segment either abolished or markedly reduced the efficiency of class I epitope delivery. If the epitope was extended at its C terminus, EtxB-mediated delivery into the class I presentation pathway was found to be completely dependent on proteasome activity. Thus, by combining the GM1-targeting function of EtxB with the 10-amino-acid Pol segment, highly efficient delivery of exogenous epitopes into the endogenous pathway of class I antigen processing and presentation can be achieved.


Assuntos
Apresentação de Antígeno/imunologia , Toxinas Bacterianas/imunologia , Enterotoxinas/imunologia , Epitopos de Linfócito T/imunologia , Proteínas de Escherichia coli , Antígenos de Histocompatibilidade Classe I/imunologia , Proteínas de Ligação a RNA , Linfócitos T Citotóxicos/imunologia , Proteínas Virais , Sequência de Aminoácidos , Animais , Linhagem Celular , Reagentes de Ligações Cruzadas , Cisteína Endopeptidases/imunologia , DNA Polimerase Dirigida por DNA/imunologia , Endossomos/imunologia , Exodesoxirribonucleases/imunologia , Complexo de Golgi/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Complexos Multienzimáticos/imunologia , Proteínas do Nucleocapsídeo , Nucleoproteínas/imunologia , Ovalbumina/imunologia , Peptídeos/imunologia , Complexo de Endopeptidases do Proteassoma , Receptores de Superfície Celular/imunologia , Succinimidas/imunologia , Proteínas do Core Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...