Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ArXiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-38106459

RESUMO

Pediatric brain and spinal cancers remain the leading cause of cancer-related death in children. Advancements in clinical decision-support in pediatric neuro-oncology utilizing the wealth of radiology imaging data collected through standard care, however, has significantly lagged other domains. Such data is ripe for use with predictive analytics such as artificial intelligence (AI) methods, which require large datasets. To address this unmet need, we provide a multi-institutional, large-scale pediatric dataset of 23,101 multi-parametric MRI exams acquired through routine care for 1,526 brain tumor patients, as part of the Children's Brain Tumor Network. This includes longitudinal MRIs across various cancer diagnoses, with associated patient-level clinical information, digital pathology slides, as well as tissue genotype and omics data. To facilitate downstream analysis, treatment-naïve images for 370 subjects were processed and released through the NCI Childhood Cancer Data Initiative via the Cancer Data Service. Through ongoing efforts to continuously build these imaging repositories, our aim is to accelerate discovery and translational AI models with real-world data, to ultimately empower precision medicine for children.

3.
Cell Genom ; 3(7): 100340, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37492101

RESUMO

Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals universal TP53 dysregulation in mismatch repair-deficient hypermutant high-grade gliomas and TP53 loss as a significant marker for poor overall survival in ependymomas and H3 K28-mutant diffuse midline gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.

4.
Neoplasia ; 35: 100846, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335802

RESUMO

Pediatric brain tumors are the leading cause of cancer-related death in children in the United States and contribute a disproportionate number of potential years of life lost compared to adult cancers. Moreover, survivors frequently suffer long-term side effects, including secondary cancers. The Children's Brain Tumor Network (CBTN) is a multi-institutional international clinical research consortium created to advance therapeutic development through the collection and rapid distribution of biospecimens and data via open-science research platforms for real-time access and use by the global research community. The CBTN's 32 member institutions utilize a shared regulatory governance architecture at the Children's Hospital of Philadelphia to accelerate and maximize the use of biospecimens and data. As of August 2022, CBTN has enrolled over 4700 subjects, over 1500 parents, and collected over 65,000 biospecimen aliquots for research. Additionally, over 80 preclinical models have been developed from collected tumors. Multi-omic data for over 1000 tumors and germline material are currently available with data generation for > 5000 samples underway. To our knowledge, CBTN provides the largest open-access pediatric brain tumor multi-omic dataset annotated with longitudinal clinical and outcome data, imaging, associated biospecimens, child-parent genomic pedigrees, and in vivo and in vitro preclinical models. Empowered by NIH-supported platforms such as the Kids First Data Resource and the Childhood Cancer Data Initiative, the CBTN continues to expand the resources needed for scientists to accelerate translational impact for improved outcomes and quality of life for children with brain and spinal cord tumors.


Assuntos
Neoplasias Encefálicas , Qualidade de Vida , Adulto , Humanos , Criança , Neoplasias Encefálicas/terapia
5.
JCO Clin Cancer Inform ; 5: 881-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428097

RESUMO

Cancer Informatics for Cancer Centers (CI4CC) is a grassroots, nonprofit 501c3 organization intended to provide a focused national forum for engagement of senior cancer informatics leaders, primarily aimed at academic cancer centers anywhere in the world but with a special emphasis on the 70 National Cancer Institute-funded cancer centers. This consortium has regularly held topic-focused biannual face-to-face symposiums. These meetings are a place to review cancer informatics and data science priorities and initiatives, providing a forum for discussion of the strategic and pragmatic issues that we faced at our respective institutions and cancer centers. Here, we provide meeting highlights from the latest CI4CC Symposium, which was delayed from its original April 2020 schedule because of the COVID-19 pandemic and held virtually over three days (September 24, October 1, and October 8) in the fall of 2020. In addition to the content presented, we found that holding this event virtually once a week for 6 hours was a great way to keep the kind of deep engagement that a face-to-face meeting engenders. This is the second such publication of CI4CC Symposium highlights, the first covering the meeting that took place in Napa, California, from October 14-16, 2019. We conclude with some thoughts about using data science to learn from every child with cancer, focusing on emerging activities of the National Cancer Institute's Childhood Cancer Data Initiative.


Assuntos
COVID-19 , Informática Médica , Neoplasias , Adolescente , Criança , Ciência de Dados , Humanos , Neoplasias/epidemiologia , Neoplasias/terapia , Pandemias , SARS-CoV-2 , Adulto Jovem
8.
J Clin Transl Sci ; 4(4): 286-293, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33244408

RESUMO

Twelve evidence-based profiles of roles across the translational workforce and two patients were made available through clinical and translational science (CTS) Personas, a project of the Clinical and Translational Science Awards (CTSA) Program National Center for Data to Health (CD2H). The persona profiles were designed and researched to demonstrate the key responsibilities, motivators, goals, software use, pain points, and professional development needs of those working across the spectrum of translation, from basic science to clinical research to public health. The project's goal was to provide reliable documents that could be used to inform CTSA software development projects, educational resources, and communication initiatives. This paper presents the initiative to create personas for the translational workforce, including the methodology, engagement strategy, and lessons learned. Challenges faced and successes achieved by the project may serve as a roadmap for others searching for best practices in the creation of Persona profiles.

9.
J Hosp Librariansh ; 20(3): 204-216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33727894

RESUMO

Academic health centers, CTSA hubs, and hospital libraries experience similar funding challenges and charges to do more with less. In recent years academic health center and hospital librarians have risen to these challenges by examining their service models, and beyond that, examining their patron base and users' needs. To meet the needs of employees, patients, and those who assist patients, hospital librarians can employ the CTS Personas, a project of the Clinical and Translational Science Awards (CTSA) Program National Center for Data to Health. The Persona profiles, which outline the motivations, goals, pain points, wants, and needs of twelve employees and two patients in translational science, provide vital information and insights that can inform everything from designing software tools and educational services, to advertising these services, to designing impactful and collaborative library spaces.

10.
Genet Med ; 22(2): 371-380, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31481752

RESUMO

PURPOSE: Clinicians and researchers must contextualize a patient's genetic variants against population-based references with detailed phenotyping. We sought to establish globally scalable technology, policy, and procedures for sharing biosamples and associated genomic and phenotypic data on broadly consented cohorts, across sites of care. METHODS: Three of the nation's leading children's hospitals launched the Genomic Research and Innovation Network (GRIN), with federated information technology infrastructure, harmonized biobanking protocols, and material transfer agreements. Pilot studies in epilepsy and short stature were completed to design and test the collaboration model. RESULTS: Harmonized, broadly consented institutional review board (IRB) protocols were approved and used for biobank enrollment, creating ever-expanding, compatible biobanks. An open source federated query infrastructure was established over genotype-phenotype databases at the three hospitals. Investigators securely access the GRIN platform for prep to research queries, receiving aggregate counts of patients with particular phenotypes or genotypes in each biobank. With proper approvals, de-identified data is exported to a shared analytic workspace. Investigators at all sites enthusiastically collaborated on the pilot studies, resulting in multiple publications. Investigators have also begun to successfully utilize the infrastructure for grant applications. CONCLUSIONS: The GRIN collaboration establishes the technology, policy, and procedures for a scalable genomic research network.


Assuntos
Gerenciamento de Dados/métodos , Processamento Eletrônico de Dados/métodos , Armazenamento e Recuperação da Informação/métodos , Bancos de Espécimes Biológicos/normas , Pesquisa Biomédica/métodos , Bases de Dados Factuais , Bases de Dados Genéticas , Comitês de Ética em Pesquisa , Genômica/métodos , Humanos , Disseminação de Informação , Pesquisadores
15.
J Am Med Inform Assoc ; 21(6): 969-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24464852

RESUMO

BACKGROUND: As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. METHODS: Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. RESULTS: Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. CONCLUSIONS: Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics.


Assuntos
Sistemas Computacionais , Conjuntos de Dados como Assunto , Genômica , Software , Humanos , Internet , Fenótipo , Integração de Sistemas
16.
J Comput Biol ; 18(11): 1575-97, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21999288

RESUMO

This article presents a new graph-based algorithm for identifying branched metabolic pathways in multi-genome scale metabolic data. The term branched is used to refer to metabolic pathways between compounds that consist of multiple pathways that interact biochemically. A branched pathway may produce a target compound through a combination of linear pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While branched metabolic pathways predominate in metabolic networks, most previous work has focused on identifying linear metabolic pathways. The ability to automatically identify branched pathways is important in applications that require a deeper understanding of metabolism, such as metabolic engineering and drug target identification. The algorithm presented in this article utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on several well-characterized metabolic pathways that demonstrate that the new merging approach can efficiently find biologically relevant branched metabolic pathways.


Assuntos
Algoritmos , Simulação por Computador , Redes e Vias Metabólicas , Modelos Biológicos , Vias Biossintéticas , Metabolismo dos Carboidratos , Carotenoides/biossíntese , Cefalosporinas/biossíntese , Eritromicina/biossíntese , Glucose-6-Fosfato/metabolismo , Inosina Monofosfato/biossíntese , Licopeno
17.
Bioinformatics ; 26(12): 1548-55, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20421197

RESUMO

MOTIVATION: Finding novel or non-standard metabolic pathways, possibly spanning multiple species, has important applications in fields such as metabolic engineering, metabolic network analysis and metabolic network reconstruction. Traditionally, this has been a manual process, but the large volume of metabolic data now available has created a need for computational tools to automatically identify biologically relevant pathways. RESULTS: We present new algorithms for finding metabolic pathways, given a desired start and target compound, that conserve a given number of atoms by tracking the movement of atoms through metabolic networks containing thousands of compounds and reactions. First, we describe an algorithm that identifies linear pathways. We then present a new algorithm for finding branched metabolic pathways. Comparisons to known metabolic pathways demonstrate that atom tracking enables our algorithms to avoid many unrealistic connections, often found in previous approaches, and return biologically meaningful pathways. Our results also demonstrate the potential of the algorithms to find novel or non-standard pathways that may span multiple organisms. AVAILABILITY: The software is freely available for academic use at: http://www.kavrakilab.org/atommetanet. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional/métodos , Redes e Vias Metabólicas
18.
Mol Syst Biol ; 4: 225, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18985025

RESUMO

The virulence of Mycobacterium tuberculosis depends on the ability of the bacilli to switch between replicative (growth) and non-replicative (dormancy) states in response to host immunity. However, the gene regulatory events associated with transition to dormancy are largely unknown. To address this question, we have assembled the largest M. tuberculosis transcriptional-regulatory network to date, and characterized the temporal response of this network during adaptation to stationary phase and hypoxia, using published microarray data. Distinct sets of transcriptional subnetworks (origons) were responsive at various stages of adaptation, showing a gradual progression of network response under both conditions. Most of the responsive origons were in common between the two conditions and may help define a general transcriptional signature of M. tuberculosis growth arrest. These results open the door for a systems-level understanding of transition to non-replicative persistence, a phenotypic state that prevents sterilization of infection by the host immune response and promotes the establishment of latent M. tuberculosis infection, a condition found in two billion people worldwide.


Assuntos
Genes Bacterianos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Fatores de Transcrição/metabolismo
19.
Proteins ; 68(3): 646-61, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17523187

RESUMO

Multiscale methods are becoming increasingly promising as a way to characterize the dynamics of large protein systems on biologically relevant time-scales. The underlying assumption in multiscale simulations is that it is possible to move reliably between different resolutions. We present a method that efficiently generates realistic all-atom protein structures starting from the C(alpha) atom positions, as obtained for instance from extensive coarse-grain simulations. The method, a reconstruction algorithm for coarse-grain structures (RACOGS), is validated by reconstructing ensembles of coarse-grain structures obtained during folding simulations of the proteins src-SH3 and S6. The results show that RACOGS consistently produces low energy, all-atom structures. A comparison of the free energy landscapes calculated using the coarse-grain structures versus the all-atom structures shows good correspondence and little distortion in the protein folding landscape.


Assuntos
Proteínas/química , Algoritmos , Sequência de Aminoácidos , Método de Monte Carlo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...