Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586056

RESUMO

Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that normally terminates at PWAR1 in non-neurons. qRTPCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11,834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.

2.
Methods Mol Biol ; 2784: 285-299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502493

RESUMO

To date, CRISPR-based DNA targeting approaches have typically used fusion proteins between full fluorescent reporters and catalytically inactive Cas9 (dCas9) for imaging rather than detection of endogenous genomic DNA sequences. A promising alternative strategy for DNA targeting is the direct biosensing of user-defined sequences at single copy with single-cell resolution. Our recently described DNA biosensing approach using a dual fusion protein biosensor comprised of two independently optimized fragments of NanoLuc luciferase (NLuc) directionally fused to dCas9 paired with user-defined single-guide RNAs (sgRNAs) could allow users to sensitively detect unique copies of a target sequence in individual living cells using common laboratory equipment such as a microscope or a luminescence-equipped microplate reader. Here we describe a protocol for using such a DNA biosensor noninvasively in situ.


Assuntos
Técnicas Biossensoriais , RNA Guia de Sistemas CRISPR-Cas , Sequência de Bases , DNA/genética , DNA/metabolismo , Luciferases/genética , Luciferases/metabolismo , Sistemas CRISPR-Cas/genética
3.
Front Genome Ed ; 4: 867390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35403097

RESUMO

An extensive arsenal of biosensing tools has been developed based on the clustered regularly interspaced short palindromic repeat (CRISPR) platform, including those that detect specific DNA sequences both in vitro and in live cells. To date, DNA imaging approaches have traditionally used full fluorescent reporter-based fusion probes. Such "always-on" probes differentiate poorly between bound and unbound probe and are unable to sensitively detect unique copies of a target sequence in individual cells. Herein we describe a DNA biosensor that provides a sensitive readout for such low-copy DNA sequences through proximity-mediated reassembly of two independently optimized fragments of NanoLuc luciferase (NLuc), a small, bright luminescent reporter. Applying this "turn-on" probe in live cells, we demonstrate an application not easily achieved by fluorescent reporter-based probes, detection of individual endogenous genomic loci using standard epifluorescence microscopy. This approach could enable detection of gene edits during ex vivo editing procedures and should be a useful platform for many other live cell DNA biosensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...