Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873160

RESUMO

A catalog of neuronal cell types has often been called a "parts list" of the brain, and regarded as a prerequisite for understanding brain function. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven essential for understanding fly vision. Here we analyze the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity. We more than double the list of known types. Most new cell types contain between 10 and 100 cells, and integrate information over medium distances in the visual field. Some existing type families (transmedullary, lobula intrinsic, and lobula plate intrinsic) at least double in number of types, with implications for perception of color, motion, and form. We introduce a new family, serpentine medulla intrinsic, which has more types than any other, and three new families of types that span multiple neuropils. We demonstrate self-consistency of our cell types through automatic assignment of cells by distance in high-dimensional feature space, and provide further validation by selection of small subsets of discriminative features. Our work showcases the advantages of connectomic cell typing: complete and unbiased sampling, a rich array of features based on connectivity, and reduction of the connectome to a drastically simpler wiring diagram of cell types, with immediate relevance for brain function and development.

2.
Nat Methods ; 19(1): 119-128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949809

RESUMO

Due to advances in automated image acquisition and analysis, whole-brain connectomes with 100,000 or more neurons are on the horizon. Proofreading of whole-brain automated reconstructions will require many person-years of effort, due to the huge volumes of data involved. Here we present FlyWire, an online community for proofreading neural circuits in a Drosophila melanogaster brain and explain how its computational and social structures are organized to scale up to whole-brain connectomics. Browser-based three-dimensional interactive segmentation by collaborative editing of a spatially chunked supervoxel graph makes it possible to distribute proofreading to individuals located virtually anywhere in the world. Information in the edit history is programmatically accessible for a variety of uses such as estimating proofreading accuracy or building incentive systems. An open community accelerates proofreading by recruiting more participants and accelerates scientific discovery by requiring information sharing. We demonstrate how FlyWire enables circuit analysis by reconstructing and analyzing the connectome of mechanosensory neurons.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Drosophila melanogaster/fisiologia , Imageamento Tridimensional/métodos , Software , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Gráficos por Computador , Visualização de Dados , Drosophila melanogaster/citologia , Neurônios/citologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...