Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834631

RESUMO

The thermal diffusivity of powder bed plays a crucial role in laser powder bed fusion (LPBF) additive manufacturing. The mechanical properties of the parts built by LPBF are immensely influenced by the thermal properties of the powder bed. This study aims to measure the thermal diffusivity of metallic powder, nickel-based super alloy Inconel718 (IN718), in LPBF using laser flash three-layered analysis in a DLF1600 instrument, which incorporates a special powder cell to encapsulate the powdered sample. Measurements were performed at different temperatures. The thermal diffusivity of several reference samples was measured for the purpose of validating the test results, and it was compared to published data for identical measures. It was observed that experimental results for powder samples were smaller than the actual thermal diffusivity of the sample. R software analysis was used to analyze test data in order to obtain powder thermal diffusivity values that were close to the actual values.

2.
Materials (Basel) ; 16(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37049118

RESUMO

Laser powder bed fusion (LPBF) additive manufacturing (AM) has been adopted by various industries as a novel manufacturing technology. Powder spreading is a crucial part of the LPBF AM process that defines the quality of the fabricated objects. In this study, the impacts of various input parameters on the spread of powder density and particle distribution during the powder spreading process are investigated using the DEM (discrete element method) simulation tool. The DEM simulations extend over several powder layers and are used to analyze the powder particle packing density variation in different layers and at different points along the longitudinal spreading direction. Additionally, this research covers experimental measurements of the density of the powder packing and the powder particle size distribution on the construction plate.

3.
Rev Sci Instrum ; 93(12): 123702, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586947

RESUMO

We address new measurement challenges relating to 3D printing in metal powder using the powder bed fusion technique. Using a combination of confocal microscopy principles and fast, sensitive mid-infrared collection techniques, we present a compact and versatile method of measuring and analyzing broadband thermal emissions from the vicinity of the molten metal pool during the additive manufacturing process. We demonstrate the benefits of this instrumentation and potential for scientific research as well as in situ monitoring. Our compact microscope collection optics can be implemented in various powder bed fusion machines under vacuum or inert atmospheric environments to enable extensions such as multi-color pyrometry or spectroscopic studies of additive manufacturing processes.

4.
Beilstein J Nanotechnol ; 7: 1428-1433, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826517

RESUMO

Nanocrystals develop in amorphous alloys usually during annealing treatments with growth- or nucleation-controlled mechanisms. An alternative processing route is intense deformation and nanocrystals have been shown to develop in shear bands during the deformation process. Some controversy surrounded the idea of adiabatic heating in shear bands during their genesis, but specific experiments have revealed that the formation of nanocrystals in shear bands has to be related to localized deformation rather than thermal effects. A much less debated issue has been the spatial distribution of deformation in the amorphous alloys during intense deformation. The current work examines the hypothesis that intense deformation affects the regions outside shear bands and even promotes nanocrystal formation in those regions upon annealing. Melt-spun amorphous Al88Y7Fe5 alloy was intensely cold rolled. Microcalorimeter measurements at 60 °C indicated a slight but observable growth of nanocrystals in shear bands over the annealing time of 10 days. When the cold-rolled samples were annealed at 210 °C for one hour, transmission electron images did not show any nanocrystals for as-spun ribbons, but nanocrystals developed outside shear bands for the cold rolled samples. X-ray analysis indicated an increase in intensity of the Al peaks following the 210 °C annealing while the as-spun sample remained "X-ray amorphous". These experimental observations strongly suggest that cold rolling affects regions (i.e., spatial heterogeneities) outside shear bands and stimulates the formation of nanocrystals during annealing treatments at temperatures well below the crystallization temperature of undeformed ribbons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...