Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(11): 729, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949858

RESUMO

Accumulation of α-synuclein aggregates in the substantia nigra pars compacta is central in the pathophysiology of Parkinson's disease, leading to the degeneration of dopaminergic neurons and the manifestation of motor symptoms. Although several PD models mimic the pathological accumulation of α-synuclein after overexpression, they do not allow for controlling and monitoring its aggregation. We recently generated a new optogenetic tool by which we can spatiotemporally control the aggregation of α-synuclein using a light-induced protein aggregation system. Using this innovative tool, we aimed to characterize the impact of α-synuclein clustering on mitochondria, whose activity is crucial to maintain neuronal survival. We observed that aggregates of α-synuclein transiently and dynamically interact with mitochondria, leading to mitochondrial depolarization, lower ATP production, mitochondrial fragmentation and degradation via cardiolipin externalization-dependent mitophagy. Aggregation of α-synuclein also leads to lower mitochondrial content in human dopaminergic neurons and in mouse midbrain. Interestingly, overexpression of α-synuclein alone did not induce mitochondrial degradation. This work is among the first to clearly discriminate between the impact of α-synuclein overexpression and aggregation on mitochondria. This study thus represents a new framework to characterize the role of mitochondria in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Cardiolipinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
2.
FASEB J ; 37(11): e23222, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37781970

RESUMO

The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.


Assuntos
Envelhecimento , Mitocôndrias , Abelhas , Animais , Antioxidantes , Consumo de Oxigênio , RNA Mensageiro
3.
Nat Med ; 29(6): 1487-1499, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291212

RESUMO

Cannabis use disorder (CUD) is widespread, and there is no pharmacotherapy to facilitate its treatment. AEF0117, the first of a new pharmacological class, is a signaling-specific inhibitor of the cannabinoid receptor 1 (CB1-SSi). AEF0117 selectively inhibits a subset of intracellular effects resulting from Δ9-tetrahydrocannabinol (THC) binding without modifying behavior per se. In mice and non-human primates, AEF0117 decreased cannabinoid self-administration and THC-related behavioral impairment without producing significant adverse effects. In single-ascending-dose (0.2 mg, 0.6 mg, 2 mg and 6 mg; n = 40) and multiple-ascending-dose (0.6 mg, 2 mg and 6 mg; n = 24) phase 1 trials, healthy volunteers were randomized to ascending-dose cohorts (n = 8 per cohort; 6:2 AEF0117 to placebo randomization). In both studies, AEF0117 was safe and well tolerated (primary outcome measurements). In a double-blind, placebo-controlled, crossover phase 2a trial, volunteers with CUD were randomized to two ascending-dose cohorts (0.06 mg, n = 14; 1 mg, n = 15). AEF0117 significantly reduced cannabis' positive subjective effects (primary outcome measurement, assessed by visual analog scales) by 19% (0.06 mg) and 38% (1 mg) compared to placebo (P < 0.04). AEF0117 (1 mg) also reduced cannabis self-administration (P < 0.05). In volunteers with CUD, AEF0117 was well tolerated and did not precipitate cannabis withdrawal. These data suggest that AEF0117 is a safe and potentially efficacious treatment for CUD.ClinicalTrials.gov identifiers: NCT03325595 , NCT03443895 and NCT03717272 .


Assuntos
Cannabis , Alucinógenos , Abuso de Maconha , Síndrome de Abstinência a Substâncias , Animais , Camundongos , Método Duplo-Cego , Dronabinol/efeitos adversos , Alucinógenos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome de Abstinência a Substâncias/tratamento farmacológico
4.
Biomolecules ; 13(4)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37189442

RESUMO

Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder.


Assuntos
Depressão , Transtornos Mentais , Humanos , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Transtornos Mentais/metabolismo , Estresse Oxidativo
5.
Cell Mol Life Sci ; 79(6): 327, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637383

RESUMO

The architecture of mitochondria adapts to physiological contexts: while mitochondrial fragmentation is usually associated to quality control and cell death, mitochondrial elongation often enhances cell survival during stress. Understanding how these events are regulated is important to elucidate how mitochondrial dynamics control cell fate. Here, we show that the tyrosine kinase Src regulates mitochondrial morphology. Deletion of Src increased mitochondrial size and reduced cellular respiration independently of mitochondrial mass, mitochondrial membrane potential or ATP levels. Re-expression of Src targeted to the mitochondrial matrix, but not of Src targeted to the plasma membrane, rescued mitochondrial morphology in a kinase activity-dependent manner. These findings highlight a novel function for Src in the control of mitochondrial dynamics.


Assuntos
Mitocôndrias , Quinases da Família src , Respiração Celular , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Fosforilação , Quinases da Família src/genética , Quinases da Família src/metabolismo
6.
Front Cell Dev Biol ; 9: 714710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434934

RESUMO

Peroxisome biogenesis disorders (PBDs) are a group of metabolic developmental diseases caused by mutations in one or more genes encoding peroxisomal proteins. Zellweger syndrome spectrum (PBD-ZSS) results from metabolic dysfunction caused by damaged or non-functional peroxisomes and manifests as a multi-organ syndrome with significant morbidity and mortality for which there is no current drug therapy. Mild PBD-ZSS patients can exhibit a more progressive disease course and could benefit from the identification of drugs to improve the quality of life and extend the lifespan of affected individuals. Our study used a high-throughput screen of FDA-approved compounds to identify compounds that improve peroxisome function and biogenesis in human fibroblast cells carrying the mild PBD-ZSS variant, PEX1G843D. Our screen identified the nitrogen oxide donor, S-nitrosoglutathione (GSNO), as a potential therapeutic for this mild form of PBD-ZSS. Further biochemical characterization showed that GSNO enhances both peroxisome number and function in PEX1G843D mutant fibroblasts and leads to increased survival and longer lifespan in an in vivo humanized Drosophila model carrying the PEX1G843D mutation. GSNO is therefore a strong candidate to be translated to clinical trials as a potential therapeutic for mild PBD-ZSS.

7.
Mol Immunol ; 135: 1-11, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838400

RESUMO

Neutrophils play a key role in the innate immunity with their ability to generate and release inflammatory mediators that promote the inflammatory response and consequently restore the hemostasis. As active participants in several steps of the normal inflammatory response, neutrophils are also involved in chronic inflammatory diseases such as asthma, atherosclerosis, and arthritis. Given their dual role in the modulation of inflammation, regulating the inflammatory response of neutrophils has been suggested as an important therapeutic approach by numerous researchers. The neutrophils have a relatively short lifespan, which can be problematic for some in vitro experiments. To address this issue, researchers have used the human monomyelocyte cell line PLB-985 as an in vitro model for exploratory experiments addressing neutrophil-related physiological functions. PLB-985 cells can be differentiated into a neutrophil-like phenotype upon exposure to several agonists, including dimethyl sulfoxide (DMSO). Whether this differentiation of PLB-985 affects important features related to the neutrophil's normal functions (i.e., mitochondrial activity, eicosanoid production) remains elusive, and characterizing these changes will be the focal point of this study. Our results indicate that the differentiation affected the proliferation of PLB-985 cells, without inducing apoptosis. A significant decrease in mitochondrial respiration was observed in differentiated PLB-985 cells. However, the overall mitochondria content was not affected. Immunoblotting with mitochondrial antibodies revealed a strong modulation of the succinate dehydrogenase A, superoxide dismutase 2, ubiquinol-cytochrome c reductase core protein 2 and ATP synthase subunit α in differentiated PLB-985 cells. Finally, eicosanoids (leukotriene B4, 12-hydroxyheptadecatrienoic and 15-hydroxyeicosatetraenoic acids) production was significantly increased in differentiated cells. In summary, our data demonstrate that the differentiation process of PLB-985 cells does not impact their viability despite a reduced respiratory state of the cells. This process is also accompanied by modulation of the inflammatory state of the cell. Of importance, our data suggest that PLB-985 cells could be suitable in vitro candidates to study mitochondrial-related dysfunctions in inflammatory diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Eicosanoides/metabolismo , Mitocôndrias/metabolismo , Neutrófilos/citologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Humanos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neutrófilos/imunologia , Fagocitose/efeitos dos fármacos , Superóxido Dismutase/metabolismo
8.
Neuron ; 109(9): 1513-1526.e11, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33770505

RESUMO

Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior.


Assuntos
Encéfalo/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Catalepsia/induzido quimicamente , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
9.
Mitochondrion ; 57: 257-269, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412331

RESUMO

C-Src kinase is localized in several subcellular compartments, including mitochondria where it is involved in the regulation of organelle functions and overall metabolism. Surprisingly, the characterization of the intramitochondrial Src interactome has never been fully determined. Using in vitro proximity-dependent biotin identification (BioID) coupled to mass spectrometry, we identified 51 candidate proteins that may interact directly or indirectly with c-Src within the mitochondrial matrix. Pathway analysis suggests that these proteins are involved in a large array of mitochondrial functions such as protein folding and import, mitochondrial organization and transport, oxidative phosphorylation, tricarboxylic acid cycle and metabolism of amino and fatty acids. Among these proteins, we identified 24 tyrosine phosphorylation sites in 17 mitochondrial proteins (AKAP1, VDAC1, VDAC2, VDAC3, LonP1, Hsp90, SLP2, PHB2, MIC60, UBA1, EF-Tu, LRPPRC, ACO2, OAT, ACAT1, ETFß and ATP5ß) as potential substrates for intramitochondrial Src using in silico prediction of tyrosine phospho-sites. Interaction of c-Src with SLP2 and ATP5ß was confirmed using coimmunoprecipitation. This study suggests that the intramitochondrial Src could target several proteins and regulate different mitochondrial functions.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Cromatografia Líquida , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Fosforilação , Proibitinas , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Espectrometria de Massas em Tandem
10.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167377

RESUMO

Mitochondria are fully integrated in cell signaling. Reversible phosphorylation is involved in adjusting mitochondrial physiology to the cellular needs. Protein kinase A (PKA) phosphorylates several substrates present at the external surface of mitochondria to maintain cellular homeostasis. However, few targets of PKA located inside the organelle are known. The aim of this work was to characterize the impact and the interactome of PKA located inside mitochondria. Our results show that the overexpression of intramitochondrial PKA decreases cellular respiration and increases superoxide levels. Using proximity-dependent biotinylation, followed by LC-MS/MS analysis and in silico phospho-site prediction, we identified 21 mitochondrial proteins potentially targeted by PKA. We confirmed the interaction of PKA with TIM44 using coimmunoprecipitation and observed that TIM44-S80 is a key residue for the interaction between the protein and the kinase. These findings provide insights into the interactome of intramitochondrial PKA and suggest new potential mechanisms in the regulation of mitochondrial functions.


Assuntos
Biotinilação/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Mitocondriais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Coloração e Rotulagem/métodos , Respiração Celular/fisiologia , Reagentes de Ligações Cruzadas/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação/métodos , Microscopia de Fluorescência , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais
11.
Metabolites ; 10(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066485

RESUMO

Excess dietary carbohydrates are linked to dysregulation of metabolic pathways converging to mitochondria and metabolic inflexibility. Here, we determined the role of the mitochondrial pyruvate carrier (MPC) in the occurrence of this metabolic inflexibility in wild-type (WT) and MPC1-deficient (MPC1def) flies that were exposed to diets with different sucrose concentrations for 15-25 days (Standard Diet: SD, Medium-Sucrose Diet: MSD, and High-Sucrose Diet: HSD). Our results showed that MPC1def flies had lower mitochondrial respiration rates than WT flies on the SD and MSD. However, when exposed to the HSD, WT flies displayed decreased mitochondrial respiration rates compared to MPC1def flies. WT flies exposed to the HSD also displayed increased proline contribution and slightly decreased MPC1 expression. Surprisingly, when fed the MSD and the HSD, few metabolites were altered in WT flies whereas MPC1def flies display significant accumulation of glycogen, glucose, fructose, lactate, and glycerol. Overall, this suggests that metabolic inflexibility starts to occur in WT flies after 15-25 days of exposure to the HSD whereas the MPC1def flies display metabolic inflexibility independently of the diet provided. This study thus highlights the involvement of MPC as an essential protein in Drosophila to maintain proper metabolic homeostasis during changes in dietary resources.

12.
Metabolites ; 10(9)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899962

RESUMO

In insect, pyruvate is generally the predominant oxidative substrate for mitochondria. This metabolite is transported inside mitochondria via the mitochondrial pyruvate carrier (MPC), but whether and how this transporter controls mitochondrial oxidative capacities in insects is still relatively unknown. Here, we characterize the importance of pyruvate transport as a metabolic control point for mitochondrial substrate oxidation in two genotypes of an insect model, Drosophila melanogaster, differently expressing MPC1, an essential protein for the MPC function. We evaluated the kinetics of pyruvate oxidation, mitochondrial oxygen consumption, metabolic profile, activities of metabolic enzymes, and climbing abilities of wild-type (WT) flies and flies harboring a deficiency in MPC1 (MPC1def). We hypothesized that MPC1 deficiency would cause a metabolic reprogramming that would favor the oxidation of alternative substrates. Our results show that the MPC1def flies display significantly reduced climbing capacity, pyruvate-induced oxygen consumption, and enzymatic activities of pyruvate kinase, alanine aminotransferase, and citrate synthase. Moreover, increased proline oxidation capacity was detected in MPC1def flies, which was associated with generally lower levels of several metabolites, and particularly those involved in amino acid catabolism such as ornithine, citrulline, and arginosuccinate. This study therefore reveals the flexibility of mitochondrial substrate oxidation allowing Drosophila to maintain cellular homeostasis.

13.
Nature ; 583(7817): 603-608, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641832

RESUMO

Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses1-5. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors5-7. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB1) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB1 receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB1 receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice.


Assuntos
Astrócitos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Mitocôndrias/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Células Cultivadas , Dronabinol/farmacologia , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Oxirredução , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Receptor CB1 de Canabinoide/agonistas , Comportamento Social
14.
Cell Physiol Biochem ; 54(4): 517-537, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32428391

RESUMO

BACKGROUND/AIMS: Src kinase family members, including c-Src, are involved in numerous signaling pathways and have been observed inside different cellular compartments. Notably, c-Src modulates carbohydrate and fatty acid metabolism and is involved in the metabolic rewiring of cancer cells. This kinase is found within mitochondria where it targets different proteins to impact on the organelle functions and overall metabolism. Surprisingly, no global metabolic characterization of Src has been performed although c-Src knock-out mice have been available for 30 years. Considering that c-Src is sensitive to various metabolites, c-Src might represent a crucial player in metabolic adjustments induced by nutrient stress. The aim of this work was to characterize the impact of c-Src on mitochondrial activity and overall metabolism using multi-omic characterization. METHODS: Src+/+ and Src-/- mice were fed ad libitum or fasted during 24h and were then analyzed using multi-omics. RESULTS: We observed that deletion of c-Src is linked to lower phosphorylation of Y412-NDUFA8, inhibition of oxygen consumption and accumulation of metabolites involved in glycolysis, TCA cycle and amino acid metabolism in mice fed ad libitum. Finally, metabolomics and (phosphotyrosine) proteomics are differently impacted by Src according to nutrient availability. CONCLUSION: The findings presented here highlight that c-Src reduces mitochondrial metabolism and impacts the metabolic adjustment induced by nutrient stress.


Assuntos
Mitocôndrias/metabolismo , Fosfotirosina/metabolismo , Proteoma/metabolismo , Quinases da Família src/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Ciclo do Ácido Cítrico/genética , Cromatografia Gasosa-Espectrometria de Massas , Glicólise/genética , Rim/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Nutrientes/metabolismo , Fosforilação , Fosfotirosina/genética , Proteômica , Espectrometria de Massas em Tandem , Quinases da Família src/genética
15.
DNA Cell Biol ; 39(8): 1421-1430, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32397749

RESUMO

Mitochondria are the only organelles that contain their own genetic material (mtDNA). Mitochondria are involved in several key physiological functions, including ATP production, Ca2+ homeostasis, and metabolism of neurotransmitters. Since these organelles perform crucial processes to maintain neuronal homeostasis, mitochondrial dysfunctions can lead to various neurodegenerative diseases. Several mitochondrial proteins involved in ATP production are encoded by mtDNA. Thus, any mtDNA alteration can ultimately lead to mitochondrial dysfunction and cell death. Accumulation of mutations, deletions, and rearrangements in mtDNA has been observed in animal models and patients suffering from Parkinson's disease (PD). Also, specific inherited variations associated with mtDNA genetic groups (known as mtDNA haplogroups) are associated with lower or higher risk of developing PD. Consequently, mtDNA alterations should now be considered important hallmarks of this neurodegenerative disease. This review provides an update about the role of mtDNA alterations in the physiopathology of PD.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Animais , Dano ao DNA/genética , Humanos , Mitocôndrias/patologia , Modelos Animais , Neurônios/patologia , Doença de Parkinson/patologia
16.
Cell Death Dis ; 10(12): 940, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819039

RESUMO

High levels and activity of Src kinase are common among breast cancer subtypes, and several inhibitors of the kinase are currently tested in clinical trials. Alterations in mitochondrial activity is also observed among the different types of breast cancer. Src kinase is localized in several subcellular compartments, including mitochondria where it targets several proteins to modulate the activity of the organelle. Although the subcellular localization of other oncogenes modulates the potency of known treatments, nothing is known about the specific role of intra-mitochondrial Src (mtSrc) in breast cancer. The aim of this work was to determine whether mtSrc kinase has specific impact on breast cancer cells. We first observed that activity of mtSrc is higher in breast cancer cells of the triple negative subtype. Over-expression of Src specifically targeted to mitochondria reduced mtDNA levels, mitochondrial membrane potential and cellular respiration. These alterations of mitochondrial functions led to lower cellular viability, shorter cell cycle and increased invasive capacity. Proteomic analyses revealed that mtSrc targets the mitochondrial single-stranded DNA-binding protein, a regulator of mtDNA replication. Our findings suggest that mtSrc promotes aggressiveness of breast cancer cells via phosphorylation of mitochondrial single-stranded DNA-binding protein leading to reduced mtDNA levels and mitochondrial activity. This study highlights the importance of considering the subcellular localization of Src kinase in the development of potent therapy for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Mitocôndrias/metabolismo , Quinases da Família src/metabolismo , Trifosfato de Adenosina/biossíntese , Apoptose/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Proliferação de Células/genética , Respiração Celular/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/genética , Fosforilação/genética , Espécies Reativas de Oxigênio/metabolismo , Transfecção , Quinases da Família src/genética
17.
Cell Rep ; 26(13): 3784-3797.e8, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917329

RESUMO

Skeletal muscle is composed of different myofiber types that preferentially use glucose or lipids for ATP production. How fuel preference is regulated in these post-mitotic cells is largely unknown, making this issue a key question in the fields of muscle and whole-body metabolism. Here, we show that microRNAs (miRNAs) play a role in defining myofiber metabolic profiles. mRNA and miRNA signatures of all myofiber types obtained at the single-cell level unveiled fiber-specific regulatory networks and identified two master miRNAs that coordinately control myofiber fuel preference and mitochondrial morphology. Our work provides a complete and integrated mouse myofiber type-specific catalog of gene and miRNA expression and establishes miR-27a-3p and miR-142-3p as regulators of lipid use in skeletal muscle.


Assuntos
MicroRNAs/genética , Fibras Musculares Esqueléticas/metabolismo , Transcriptoma , Animais , Linhagem Celular , Células Cultivadas , Redes Reguladoras de Genes , Glicogênio/metabolismo , Glicólise , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Fosforilação Oxidativa
18.
Redox Biol ; 18: 33-42, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935387

RESUMO

Anti-cancer effects of local anesthetics have been reported but the mode of action remains elusive. Here, we examined the bioenergetic and REDOX impact of levobupivacaine on human prostate cancer cells (DU145) and corresponding non-cancer primary human prostate cells (BHP). Levobupivacaine induced a combined inhibition of glycolysis and oxidative phosphorylation in cancer cells, resulting in a reduced cellular ATP production and consecutive bioenergetic crisis, along with reactive oxygen species generation. The dose-dependent inhibition of respiratory chain complex I activity by levobupivacaine explained the alteration of mitochondrial energy fluxes. Furthermore, the potency of levobupivacaine varied with glucose and oxygen availability as well as the cellular energy demand, in accordance with a bioenergetic anti-cancer mechanism. The levobupivacaine-induced bioenergetic crisis triggered cytostasis in prostate cancer cells as evidenced by a S-phase cell cycle arrest, without apoptosis induction. In DU145 cells, levobupivacaine also triggered the induction of autophagy and blockade of this process potentialized the anti-cancer effect of the local anesthetic. Therefore, our findings provide a better characterization of the REDOX mechanisms underpinning the anti-effect of levobupivacaine against human prostate cancer cells.


Assuntos
Anestésicos Locais/farmacologia , Antineoplásicos/farmacologia , Bupivacaína/análogos & derivados , Glicólise/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Bupivacaína/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Humanos , Levobupivacaína , Masculino , Oxirredução/efeitos dos fármacos , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Biochim Biophys Acta Bioenerg ; 1859(9): 868-877, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29694829

RESUMO

Mitochondria are key organelles for cellular homeostasis. They generate the most part of ATP that is used by cells through oxidative phosphorylation. They also produce reactive oxygen species, neurotransmitters and other signaling molecules. They are important for calcium homeostasis and apoptosis. Considering the role of this organelle, it is not surprising that most mitochondrial dysfunctions are linked to the development of pathologies. Various mechanisms adjust mitochondrial activity according to physiological needs. The cAMP-PKA signaling emerged in recent years as a direct and powerful mean to regulate mitochondrial functions. Multiple evidence demonstrates that such pathway can be triggered from cytosol or directly within mitochondria. Notably, specific anchor proteins target PKA to mitochondria whereas enzymes necessary for generation and degradation of cAMP are found directly in these organelles. Mitochondrial PKA targets proteins localized in different compartments of mitochondria, and related to various functions. Alterations of mitochondrial cAMP-PKA signaling affect the development of several physiopathological conditions, including neurodegenerative diseases. It is however difficult to discriminate between the effects of cAMP-PKA signaling triggered from cytosol or directly in mitochondria. The specific roles of PKA localized in different mitochondrial compartments are also not completely understood. The aim of this work is to review the role of cAMP-PKA signaling in mitochondrial (patho)physiology.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Doenças Mitocondriais/fisiopatologia , Transdução de Sinais , Animais , Humanos
20.
J Vis Exp ; (134)2018 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-29683457

RESUMO

The fruit fly, Drosophila melanogaster, represents an emerging model for the study of metabolism. Indeed, drosophila have structures homologous to human organs, possess highly conserved metabolic pathways and have a relatively short lifespan that allows the study of different fundamental mechanisms in a short period of time. It is, however, surprising that one of the mechanisms essential for cellular metabolism, the mitochondrial respiration, has not been thoroughly investigated in this model. It is likely because the measure of the mitochondrial respiration in Drosophila usually requires a very large number of individuals and the results obtained are not highly reproducible. Here, a method allowing the precise measurement of mitochondrial oxygen consumption using minimal amounts of tissue from Drosophila is described. In this method, the thoraxes are dissected and permeabilized both mechanically with sharp forceps and chemically with saponin, allowing different compounds to cross the cell membrane and modulate the mitochondrial respiration. After permeabilization, a protocol is performed to evaluate the capacity of the different complexes of the electron transport system (ETS) to oxidize different substrates, as well as their response to an uncoupler and to several inhibitors. This method presents many advantages compared to methods using mitochondrial isolations, as it is more physiologically relevant because the mitochondria are still interacting with the other cellular components and the mitochondrial morphology is conserved. Moreover, sample preparations are faster, and the results obtained are highly reproducible. By combining the advantages of Drosophila as a model for the study of metabolism with the evaluation of mitochondrial respiration, important new insights can be unveiled, especially when the flies are experiencing different environmental or pathophysiological conditions.


Assuntos
Drosophila/química , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Masculino , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...