Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
2.
Nat Commun ; 15(1): 588, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238288

RESUMO

Despite significant research, mechanisms underlying the failure of islet beta cells that result in type 2 diabetes (T2D) are still under investigation. Here, we report that Sox9, a transcriptional regulator of pancreas development, also functions in mature beta cells. Our results show that Sox9-depleted rodent beta cells have defective insulin secretion, and aging animals develop glucose intolerance, mimicking the progressive degeneration observed in T2D. Using genome editing in human stem cells, we show that beta cells lacking SOX9 have stunted first-phase insulin secretion. In human and rodent cells, loss of Sox9 disrupts alternative splicing and triggers accumulation of non-functional isoforms of genes with key roles in beta cell function. Sox9 depletion reduces expression of protein-coding splice variants of the serine-rich splicing factor arginine SRSF5, a major splicing enhancer that regulates alternative splicing. Our data highlight the role of SOX9 as a regulator of alternative splicing in mature beta cell function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Humanos , Processamento Alternativo/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Splicing de RNA
4.
Semin Nephrol ; 43(3): 151432, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37918206

RESUMO

Type 2 diabetes mellitus (T2D) has become a global epidemic affecting the health of millions of people. T2D is a complex and multifactorial metabolic disease, largely characterized by a combination of impaired insulin secretion from ß cells residing within the islets of the pancreas and peripheral insulin resistance. In this article, we discuss the current state and risk factors for T2D, conventional treatment options, and upcoming strategies, including progress in the areas of allogeneic and xenogeneic islet transplantation, with a major focus on stem cell-derived ß cells and associated technologies.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Insulina/uso terapêutico , Insulina/metabolismo
6.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606041

RESUMO

Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet ß cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in ß cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human ß cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D ß cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human ß cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-ß cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional ß cell signature.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Adulto , Humanos , Animais , Camundongos , Fator de Transcrição MafB/genética , Insulina
7.
Bioeng Transl Med ; 8(4): e10520, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476069

RESUMO

Beta cell replacement therapy (BCRT) for patients with type 1 diabetes (T1D) improves blood glucose regulation by replenishing the endogenous beta cells destroyed by autoimmune attack. Several limitations, including immune isolation, prevent this therapy from reaching its full potential. Cell encapsulation devices used for BCRT provide a protective physical barrier for insulin-producing beta cells, thereby protecting transplanted cells from immune attack. However, poor device engraftment posttransplantation leads to nutrient deprivation and hypoxia, causing metabolic strain on transplanted beta cells. Prevascularization of encapsulation devices at the transplantation site can help establish a host vascular network around the implant, increasing solute transport to the encapsulated cells. Here, we present a replenishable prevascularized implantation methodology (RPVIM) that allows for the vascular integration of replenishable encapsulation devices in the subcutaneous space. Empty encapsulation devices were vascularized for 14 days, after which insulin-producing cells were inserted without disrupting the surrounding vasculature. The RPVIM devices were compared with nonprevascularized devices (Standard Implantation Methodology [SIM]) and previously established prevascularized devices (Standard Prevascularization Implantation Methodology [SPVIM]). Results show that over 75% of RPVIM devices containing stem cell-derived insulin-producing beta cell clusters showed a signal after 28 days of implantation in subcutaneous space. Notably, not only was the percent of RPVIM devices showing signal significantly greater than SIM and SPVIM devices, but the intraperitoneal glucose tolerance tests and histological analyses showed that encapsulated stem-cell derived insulin-producing beta cell clusters retained their function in the RPVIM devices, which is crucial for the successful management of T1D.

8.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288664

RESUMO

Insulin secretion from pancreatic ß cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets. Here, we show that reduction of ZNF148 in human islets, and its deletion in stem cell-derived ß cells (SC-ß cells), enhances insulin secretion. Transcriptomics of ZNF148-deficient SC-ß cells identifies increased expression of annexin and S100 genes whose proteins form tetrameric complexes involved in regulation of insulin vesicle trafficking and exocytosis. ZNF148 in SC-ß cells prevents translocation of annexin A2 from the nucleus to its functional place at the cell membrane via direct repression of S100A16 expression. These findings point to ZNF148 as a regulator of annexin-S100 complexes in human ß cells and suggest that suppression of ZNF148 may provide a novel therapeutic strategy to enhance insulin secretion.


Assuntos
Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Secreção de Insulina , Glucose/metabolismo , Insulina/metabolismo , Exocitose , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Lab Chip ; 22(22): 4430-4442, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36305868

RESUMO

Stem cell-derived ß cells offer an alternative to primary islets for biomedical discoveries as well as a potential surrogate for islet transplantation. The expense and challenge of obtaining and maintaining functional stem cell-derived ß cells calls for a need to develop better high-content and high-throughput culture systems. Microphysiological systems (MPS) are promising high-content in vitro platforms, but scaling for high-throughput screening and discoveries remain a challenge. Traditionally, simultaneous multiplexing of liquid handling and cell loading poses a challenge in the design of high-throughput MPS. Furthermore, although MPS for islet ß culture/testing have been developed, studies on multi-day culture of stem-cell derived ß cells in MPS have been limited. We present a scalable, multiplexed islet ß MPS device that incorporates microfluidic gradient generators to parallelize fluid handling for culture and test conditions. We demonstrated the viability and functionality of the stem cell-derived enriched ß clusters (eBCs) for a week, as assessed by the ∼2 fold insulin release by the clusters to glucose challenge. To show the scalable multiplexing for drug testing, we demonstrated the loss of stimulation index after long-term exposure to logarithmic concentration range of glybenclamide. The MPS cultured eBCs also confirmed a glycolytic bottleneck as inferred by insulin secretion responses to metabolites methyl succinate and glyceric acid. Thus, we present an innovative culture platform for eBCs with a balance of high-content and high-throughput characteristics.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Microfluídica , Secreção de Insulina , Insulina/metabolismo , Células-Tronco/metabolismo
10.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35603790

RESUMO

Insulin secretion from pancreatic ß cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that ß cell-specific deletion of Zfp148 (ß-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from ß­Zfp148KO and control mice fed both a chow and a Western-style diet. ß-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. ß-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of ß-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, ß-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving ß cell function that are robust to the metabolic challenge imposed by a Western diet.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Cálcio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Nutrientes , Fatores de Transcrição/metabolismo
11.
Hum Gene Ther ; 33(15-16): 789-800, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35297680

RESUMO

Diabetes mellitus, caused by loss or dysfunction of the insulin-producing beta cells of the pancreas, is a promising target for recombinant adeno-associated virus (rAAV)-mediated gene therapy. To target potential therapeutic payloads specifically to beta cells, a cell type-specific expression control element is needed. In this study, we tested a series of rAAV vectors designed to express transgenes specifically in human beta cells using the islet-tropic rAAV-KP1 capsid. A small promoter, consisting of only 84 bp of the insulin core promoter was not beta cell-specific in AAV, but highly active in multiple cell types, including tissues outside the pancreas. A larger 363 bp fragment of the insulin promoter (INS) also lacked beta cell specificity. However, beta cell-specific expression was achieved by combining two regulatory elements, a promoter consisting of two copies of INS (INS × 2) and microRNA (miRNA) recognition elements (MREs). The INS × 2 promoter alone showed some beta cell preference, but not tight specificity. To reduce unspecific transgene expression in alpha cells, negative regulation by miRNAs was applied. MREs that are recognized by miRNAs abundant in alpha cells effectively downregulated the transgene expression in these cells. The INS2 × -MRE expression vector was highly specific to human beta cells and stem cell-derived beta cells.


Assuntos
Dependovirus , MicroRNAs , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética , Humanos , Insulina/metabolismo , MicroRNAs/metabolismo , Transgenes
12.
Stem Cell Reports ; 17(4): 979-992, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35245441

RESUMO

Cell replacement therapy using ß cells derived from stem cells is a promising alternative to conventional diabetes treatment options. Although current differentiation methods produce glucose-responsive ß cells, they can also yield populations of undesired endocrine progenitors and other proliferating cell types that might interfere with long-term islet function and safety of transplanted cells. Here, we describe the generation of an array of monoclonal antibodies against cell surface markers that selectively label stem cell-derived islet cells. A high-throughput screen identified promising candidates, including three clones that mark a high proportion of endocrine cells in differentiated cultures. A scalable magnetic sorting method was developed to enrich for human pluripotent stem cell (hPSC)-derived islet cells using these three antibodies, leading to the formation of islet-like clusters with improved glucose-stimulated insulin secretion and reduced growth upon transplantation. This strategy should facilitate large-scale production of functional islet clusters from stem cells for disease modeling and cell replacement therapy.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Diferenciação Celular , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células-Tronco Pluripotentes/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-34580120

RESUMO

The pancreatic ß-cells are essential for regulating glucose homeostasis through the coordinated release of the insulin hormone. Dysfunction of the highly specialized ß-cells results in diabetes mellitus, a growing global health epidemic. In this review, we describe the development and function of ß-cells the emerging concept of heterogeneity within insulin-producing cells, and the potential of other cell types to assume ß-cell functionality via transdifferentiation. We also discuss emerging routes to design cells with minimal ß-cell properties and human stem cell differentiation efforts that carry the promise to restore normoglycemia in patients suffering from diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Diferenciação Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
14.
Commun Biol ; 4(1): 1298, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789845

RESUMO

Cell type specification during pancreatic development is tightly controlled by a transcriptional and epigenetic network. The precise role of most transcription factors, however, has been only described in mice. To convey such concepts to human pancreatic development, alternative model systems such as pancreatic in vitro differentiation of human pluripotent stem cells can be employed. Here, we analyzed stage-specific RNA-, ChIP-, and ATAC-sequencing data to dissect transcriptional and regulatory mechanisms during pancreatic development. Transcriptome and open chromatin maps of pancreatic differentiation from human pluripotent stem cells provide a stage-specific pattern of known pancreatic transcription factors and indicate ONECUT1 as a crucial fate regulator in pancreas progenitors. Moreover, our data suggest that ONECUT1 is also involved in preparing pancreatic progenitors for later endocrine specification. The dissection of the transcriptional and regulatory circuitry revealed an important role for ONECUT1 within such network and will serve as resource to study human development and disease.


Assuntos
Fator 6 Nuclear de Hepatócito/genética , Pâncreas/fisiologia , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Fator 6 Nuclear de Hepatócito/metabolismo , Células-Tronco Embrionárias Humanas , Humanos , Transcrição Gênica
15.
Nat Med ; 27(11): 1928-1940, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663987

RESUMO

Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Fator 6 Nuclear de Hepatócito/genética , Pâncreas/embriologia , Diferenciação Celular/genética , Anormalidades Congênitas/genética , Retardo do Crescimento Fetal/genética , Vesícula Biliar/anormalidades , Proteína Homeobox Nkx-2.2/biossíntese , Proteínas de Homeodomínio/biossíntese , Humanos , Lactente , Recém-Nascido , Masculino , Herança Multifatorial/genética , Organogênese/genética , Pâncreas/anormalidades , Pancreatopatias/congênito , Pancreatopatias/genética , Células-Tronco Pluripotentes/citologia , Transcrição Gênica/genética
16.
Cell Rep ; 36(7): 109538, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407395

RESUMO

Stem cell-based replacement therapies hold the promise to restore function of damaged or degenerated tissue such as the pancreatic islets in people with type 1 diabetes. Wide application of these therapies requires overcoming the fundamental roadblock of immune rejection. To address this issue, we use genetic engineering to create human pluripotent stem cells (hPSCs) in which the majority of the polymorphic human leukocyte antigens (HLAs), the main drivers of allogeneic rejection, are deleted. We retain the common HLA class I allele HLA-A2 and less polymorphic HLA-E/F/G to allow immune surveillance and inhibition of natural killer (NK) cells. We employ a combination of in vitro assays and humanized mouse models to demonstrate that these gene manipulations significantly reduce NK cell activity and T-cell-mediated alloimmune response against hPSC-derived islet cells. In summary, our approach produces hypoimmunogenic hPSCs that can be readily matched with recipients to avoid alloimmune rejection.


Assuntos
Deleção de Genes , Rejeição de Enxerto/imunologia , Antígenos HLA/metabolismo , Ilhotas Pancreáticas/imunologia , Células-Tronco Pluripotentes/citologia , Alelos , Animais , Linhagem Celular , Células Clonais , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos Endogâmicos NOD , Linfócitos T/imunologia
17.
J Biomed Mater Res A ; 109(12): 2438-2448, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34196100

RESUMO

Type 1 diabetic patients with severe hypoglycemia unawareness have benefitted from cellular therapies, such as pancreas or islet transplantation; however, donor shortage and the need for immunosuppression limits widespread clinical application. We previously developed an intravascular bioartificial pancreas (iBAP) using silicon nanopore membranes (SNM) for immunoprotection. To ensure ample nutrient delivery, the iBAP will need a cell scaffold with high hydraulic permeability to provide mechanical support and maintain islet viability and function. Here, we examine the feasibility of superporous agarose (SPA) as a potential cell scaffold in the iBAP. SPA exhibits 66-fold greater hydraulic permeability than the SNM along with a short (<10 µm) diffusion distance to the nearest islet. SPA also supports short-term functionality of both encapsulated human islets and stem-cell-derived enriched ß-clusters in a convection-based system, demonstrated by high viability (>95%) and biphasic insulin responses to dynamic glucose stimulus. These findings suggest that the SPA scaffold will not limit nutrient delivery in a convection-based bioartificial pancreas and merits continued investigation.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Pâncreas Artificial , Sefarose/química , Transplante de Células-Tronco/métodos , Alicerces Teciduais , Adulto , Diabetes Mellitus Tipo 1/terapia , Glucose/farmacologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Membranas Artificiais , Nanoporos , Silício
18.
Elife ; 102021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34009124

RESUMO

To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify osteopontin as a regulator of this fate decision as well as human duct cell dedifferentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.


Assuntos
Perfilação da Expressão Gênica , Heterogeneidade Genética , Ductos Pancreáticos/citologia , Análise de Célula Única , Transcriptoma , Animais , Linhagem Celular , Separação Celular , Dano ao DNA , Bases de Dados Genéticas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Feminino , Geminina/genética , Geminina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfogênese , Osteopontina/genética , Osteopontina/metabolismo , Ductos Pancreáticos/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Fenótipo , RNA-Seq
19.
Front Endocrinol (Lausanne) ; 12: 631463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716982

RESUMO

Since its introduction more than twenty years ago, intraportal allogeneic cadaveric islet transplantation has been shown to be a promising therapy for patients with Type I Diabetes (T1D). Despite its positive outcome, the impact of islet transplantation has been limited due to a number of confounding issues, including the limited availability of cadaveric islets, the typically lifelong dependence of immunosuppressive drugs, and the lack of coverage of transplant costs by health insurance companies in some countries. Despite improvements in the immunosuppressive regimen, the number of required islets remains high, with two or more donors per patient often needed. Insulin independence is typically achieved upon islet transplantation, but on average just 25% of patients do not require exogenous insulin injections five years after. For these reasons, implementation of islet transplantation has been restricted almost exclusively to patients with brittle T1D who cannot avoid hypoglycemic events despite optimized insulin therapy. To improve C-peptide levels in patients with both T1 and T2 Diabetes, numerous clinical trials have explored the efficacy of mesenchymal stem cells (MSCs), both as supporting cells to protect existing ß cells, and as source for newly generated ß cells. Transplantation of MSCs is found to be effective for T2D patients, but its efficacy in T1D is controversial, as the ability of MSCs to differentiate into functional ß cells in vitro is poor, and transdifferentiation in vivo does not seem to occur. Instead, to address limitations related to supply, human embryonic stem cell (hESC)-derived ß cells are being explored as surrogates for cadaveric islets. Transplantation of allogeneic hESC-derived insulin-producing organoids has recently entered Phase I and Phase II clinical trials. Stem cell replacement therapies overcome the barrier of finite availability, but they still face immune rejection. Immune protective strategies, including coupling hESC-derived insulin-producing organoids with macroencapsulation devices and microencapsulation technologies, are being tested to balance the necessity of immune protection with the need for vascularization. Here, we compare the diverse human stem cell approaches and outcomes of recently completed and ongoing clinical trials, and discuss innovative strategies developed to overcome the most significant challenges remaining for transplanting stem cell-derived ß cells.


Assuntos
Diabetes Mellitus/terapia , Transplante das Ilhotas Pancreáticas/métodos , Transplante de Células-Tronco/métodos , Ensaios Clínicos como Assunto , Humanos
20.
Biotechnol Bioeng ; 118(2): 979-991, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33205831

RESUMO

Scalable processes are requisite for the robust biomanufacturing of human pluripotent stem cell (hPSC)-derived therapeutics. Toward this end, we demonstrate the xeno-free expansion and directed differentiation of human embryonic and induced pluripotent stem cells to definitive endoderm (DE) in a controlled stirred suspension bioreactor (SSB). Based on previous work on converting hPSCs to insulin-producing progeny, differentiation of two hPSC lines was optimized in planar cultures yielding up to 87% FOXA2+ /SOX17+ cells. Next, hPSCs were propagated in an SSB with controlled pH and dissolved oxygen. Cultures displayed a 10- to 12-fold increase in cell number over 5-6 days with the maintenance of pluripotency (>85% OCT4+ ) and viability (>85%). For differentiation, SSB cultures yielded up to 89% FOXA2+ /SOX17+ cells or ~ 8 DE cells per seeded hPSC. Specification to DE cell fate was consistently more efficient in the bioreactor compared to planar cultures. Hence, a tunable strategy is established that is suitable for the xeno-free manufacturing of DE cells from different hPSC lines in scalable SSBs. This study advances bioprocess development for producing a wide gamut of human DE cell-derived therapeutics.


Assuntos
Reatores Biológicos , Endoderma/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Linhagem Celular , Endoderma/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...