Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(40): 15017-15024, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37747361

RESUMO

Health authorities have highlighted the need to determine oligonucleotide aggregates. However, existing technologies have limitations that have prevented the reliable analysis of size variants for large nucleic acids and lipid nanoparticles (LNPs). In this work, nucleic acid and LNP aggregation was examined using prototype, low adsorption ultrawide pore size exclusion chromatography (SEC) columns. A preliminary study was conducted to determine the column's physicochemical properties. A large difference in aggregate content (17.8 vs 59.7 %) was found for a model messenger RNA (mRNA) produced by different manufacturers. We further investigated the nature of the aggregates via a heat treatment. Interestingly, thermal stress irreversibly decreased the amount of aggregates from 59.7 to 4.1% and increased the main peak area 3.3-fold. To the best of our knowledge, for the first time, plasmid DNA topological forms and multimers were separated by analytical SEC. The degradation trends were compared to the data obtained with an anion exchange chromatography method. Finally, unconjugated and fragment antigen-binding (Fab)-guided LNPs were analyzed and their elution times were plotted against their sizes as measured by DLS. Multi-angle light scattering (MALS) was coupled to SEC in order to gain further insights on large species eluting before the LNPs, which were later identified as self-associating LNPs. This study demonstrated the utility of ultrawide pore SEC columns in characterizing the size variants of large nucleic acid therapeutics and LNPs.

2.
J Pharm Sci ; 110(6): 2362-2371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33652014

RESUMO

Constrained peptides (CPs) have emerged as attractive candidates for drug discovery and development. To fully unlock the therapeutic potential of CPs, it is crucial to understand their physical stability and minimize the formation of aggregates that could induce immune responses. Although amyloid like aggregates have been researched extensively, few studies have focused on aggregates from other peptide scaffolds (e.g., CPs). In this work, a streamlined approach to effectively profile the nature and formation pathway of CP aggregates was demonstrated. Aggregates of various sizes were detected and shown to be amorphous. Though no major changes were found in peptide structure upon aggregation, these aggregates appeared to have mixed natures, consisting of primarily non-covalent aggregates with a low level of covalent species. This co-existence phenomenon was also supported by two kinetic pathways observed in time- and temperature-dependent aggregation studies. Furthermore, a stability study with 8 additional peptide variants exhibited good correlation between aggregation propensity and peptide hydrophobicity. Therefore, a dual aggregation pathway was proposed, with the non-covalent aggregates driven by hydrophobic interactions, whereas the covalent ones formed through disulfide scrambling. Overall, the workflow presented here provides a powerful strategy for comprehensive characterization of peptide aggregates and understanding their mechanisms of formation.


Assuntos
Amiloide , Peptídeos , Dissulfetos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos
3.
J Pharm Biomed Anal ; 197: 113955, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607502

RESUMO

The combination of polyethylene glycol (PEG) and polyvinyl chloride (PVC) medical tubing was previously demonstrated to degrade an active pharmaceutical ingredient (API), a phenomenon proposed to occur by free radical mechanisms. This study tests the hypothesis that dehydrochlorinated PVC at the tubing surface increases the oxidative potential of PEG autooxidation via radical propagation. The functional group composition at the surfaces of intact, autoclaved, or force-degraded medical grade PVC tubings was assessed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The content of double bonds in PVC was correlated with the extent of API degradation in the PEG-PVC system, with the repeated autoclaving cycle treatments yielding the most reactive tubing. After PEG exposure, new functional groups on the surface of PVC were observed, indicating the participation of PVC in the oxidation reactions. The PEG-PVC system was further probed by the fluorinated spin-trap reagent FDMPO, where trapped adducts were analyzed by 19F NMR, revealing the presence of three radical species. Trapped adducts were then analyzed by two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS), which revealed the presence of free chlorine atoms and/or hypochlorous acid and a PEG alkoxy radical. Chemical mechanisms describing the interaction between dehydrochlorinated PVC and PEG are proposed to explain the presence of free radicals and the functional group changes in the PVC surface.


Assuntos
Polietilenoglicóis , Cloreto de Polivinila , Cromatografia Líquida , Radicais Livres , Espectrometria de Massas em Tandem
4.
Anal Bioanal Chem ; 410(5): 1409-1415, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29279989

RESUMO

The INLIGHT™ strategy for N-linked glycan derivatization has been shown to overcome many of the challenges associated with glycan analysis. The hydrazide tag reacts efficiently with the glycans, increasing their non-polar surface area, allowing for reversed-phase separations and increased ionization efficiency. We have taken the INLIGHT™ strategy and adopted it for use with O-linked glycans. A central composite design was utilized to find optimized tagging conditions (45% acetic acid, 0.1 µg/µL tag concentration, 37 C, 1.75 h). Derivatization at optimized conditions was much quicker than any hydrazide derivatization strategy used previously. Human immunoglobulin A (IgA) and bovine submaxillary mucin (BSM) were then deglycosylated through hydrazinolysis and the removed glycans were tagged under optimum conditions. XIC of tagged glycans and MS2 data show successful hydrazide tagging of O-linked glycans for the first time. Graphical abstract The INLIGHT™ hydrazide tag was optimized using a central composite design for derivatization of O-linked glycans. Two glycoprotein standards were deglycosylated through hydrazinolysis and tagged at the optimized conditions. MS/MS data shows INLIGHT™ derivatization of glycans demonstrating successful hydrazide tagging of O-glycans for the first time.


Assuntos
Hidrazinas/química , Polissacarídeos/química , Cromatografia Líquida , Glicoproteínas/química , Espectrometria de Massas
5.
Anal Chem ; 89(17): 8981-8987, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28612611

RESUMO

We describe the DRILL (dry ion localization and locomotion) device, which is an interface for electrospray ionization (ESI)-mass spectrometry (MS) that exploits a swirling flow to enable the use of inertial separation to prescribe different fates for electrosprayed droplets based on their size. This source adds a new approach to charged droplet trajectory manipulation which, when combined with hydrodynamic drag forces and electric field forces, provides a rich range of possible DRILL operational modes. Here, we experimentally demonstrate sensitivity improvement obtained via vortex-induced inertial sorting of electrosprayed droplets/ions: one possible mode of DRILL operation. In this mode, DRILL removes larger droplets while accelerating the remainder of the ESI plume, producing a high velocity stream of gas-enriched spray with small, highly charged droplets and ions and directing it toward the MS inlet. The improved signal-to-noise ratio (10-fold enhancement) in the detection of angiotensin I is demonstrated using the DRILL interface coupled to ESI-MS along with an improved limit of detection (10-fold enhancement, 100 picomole) in the detection of angiotensin II. The utility of DRILL has also been demonstrated by liquid chromatography (LC)-MS: a stable isotope labeled peptide cocktail was spiked into a complex native tissue extract and quantified by unscheduled multiple reaction monitoring on a TSQ Vantage. DRILL demonstrated improved signal strength (up to a 700-fold) for 8 out of 9 peptides and had no effects on the peak shape of the transitions.


Assuntos
Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Angiotensina I/análise , Angiotensina I/metabolismo , Angiotensina II/análise , Angiotensina II/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Marcação por Isótopo , Limite de Detecção , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
6.
J Am Soc Mass Spectrom ; 28(4): 729-732, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28127681

RESUMO

Understanding the rearrangement of gas-phase ions via tandem mass spectrometry is critical to improving manual and automated interpretation of complex datasets. N-glycan analysis may be carried out under collision induced (CID) or higher energy collision dissociation (HCD), which favors cleavage at the glycosidic bond. However, fucose migration has been observed in tandem MS, leading to the formation of new bonds over four saccharide units away. In the following work, we report the second instance of saccharide migration ever to occur for N-glycans. Using horseradish peroxidase as a standard, the beta-1,2 xylose was observed to migrate from a hexose to a glucosamine residue on the (Xyl)Man3GlcNac2 glycan. This investigation was followed up in a complex N-linked glycan mixture derived from stem differentiating xylem tissue, and the rearranged product ion was observed for 75% of the glycans. Rearrangement was not favored in isomeric glycans with a core or antennae fucose and unobserved in glycans predicted to have a permanent core-fucose modification. As the first empirical observation of this rearrangement, this work warrants dissemination so it may be searched in de novo sequencing glycan workflows. Graphical Abstract ᅟ.

7.
Anal Bioanal Chem ; 409(2): 487-497, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27491298

RESUMO

Our greater understanding of the importance of N-linked glycosylation in biological systems has spawned the field of glycomics and development of analytical tools to address the many challenges regarding our ability to characterize and quantify this complex and important modification as it relates to biological function. One of the unmet needs of the field remains a systematic method for characterization of glycans in new biological systems. This study presents a novel workflow for identification of glycans using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT™) strategy developed in our lab. This consists of monoisotopic mass extraction followed by peak pair identification of tagged glycans from a theoretical library using an in-house program. Identification and relative quantification could then be performed using the freely available bioinformatics tool Skyline. These studies were performed in the biological context of studying the N-linked glycome of differentiating xylem of the poplar tree, a widely studied model woody plant, particularly with respect to understanding lignin biosynthesis during wood formation. Through our workflow, we were able to identify 502 glycosylated proteins including 12 monolignol enzymes and 1 peroxidase (PO) through deamidation glycosite analysis. Finally, our novel semi-automated workflow allowed for rapid identification of 27 glycans by intact mass and by NAT/SIL peak pairing from a library containing 1573 potential glycans, eliminating the need for extensive manual analysis. Implementing Skyline for relative glycan quantification allowed for improved accuracy and precision of quantitative measurements over current processing tools which we attribute to superior algorithms correction for baseline variation and MS1 peak filtering. Graphical abstract Workflow for FANGS-INLIGHT glycosite profiling of plant xylem and monolignol proteins followed by INLIGHT tagging with semi-automated identification of glycans by light-heavy peak pairs. Finally, manual validation and relative quantification was performed in Skyline.


Assuntos
Biologia Computacional , Polissacarídeos/análise , Populus/química , Xilema/química , Biologia Computacional/normas , Biologia Computacional/tendências
8.
J Vis Exp ; (109)2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27023253

RESUMO

There is a growing desire in the biological and clinical sciences to integrate and correlate multiple classes of biomolecules to unravel biology, define pathways, improve treatment, understand disease, and aid biomarker discovery. N-linked glycosylation is one of the most important and robust post-translational modifications on proteins and regulates critical cell functions such as signaling, adhesion, and enzymatic function. Analytical techniques to purify and analyze N-glycans have remained relatively static over the last decade. While accurate and effective, they commonly require significant expertise and resources. Though some high-throughput purification schemes have been developed, they have yet to find widespread adoption and often rely on the enrichment of glycopeptides. One promising method, developed by Thomas-Oates et al., filter aided N-glycan separation (FANGS), was qualitatively demonstrated on tissues. Herein, we adapted FANGS to plasma and coupled it to the individuality normalization when labeling with glycan hydrazide tags strategy in order to achieve accurate relative quantification by liquid chromatography mass spectrometry and enhanced electrospray ionization. Furthermore, we designed new functionality to the protocol by achieving tandem, shotgun proteomics and glycosylation site analysis on hen plasma. We showed that N-glycans purified on filter and derivatized by hydrophobic hydrazide tags were comparable in terms of abundance and class to those by solid phase extraction (SPE); the latter is considered a gold standard in the field. Importantly, the variability in the two protocols was not statistically different. Proteomic data that was collected in-line with glycomic data had the same depth compared to a standard trypsin digest. Peptide deamidation is minimized in the protocol, limiting non-specific deamidation detected at glycosylation motifs. This allowed for direct glycosylation site analysis, though the protocol can accommodate (18)O site labeling as well. Overall, we demonstrated a new in-line high-throughput, unbiased, filter based protocol for quantitative glycomics and proteomics analysis.


Assuntos
Glicômica/métodos , Glicopeptídeos/análise , Polissacarídeos/análise , Proteômica/métodos , Animais , Galinhas , Cromatografia Líquida/métodos , Glicopeptídeos/sangue , Glicosilação , Humanos , Espectrometria de Massas/métodos , Peptídeos/análise , Peptídeos/sangue , Polissacarídeos/sangue , Processamento de Proteína Pós-Traducional , Proteínas/análise , Extração em Fase Sólida/métodos , Suínos
9.
J Am Soc Mass Spectrom ; 27(5): 767-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26951559

RESUMO

Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.


Assuntos
Espectrometria de Massas , Modelos Estatísticos , Projetos de Pesquisa
10.
J Proteome Res ; 14(10): 4394-401, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26347193

RESUMO

An early-stage, population-wide biomarker for ovarian cancer (OVC) is essential to reverse its high mortality rate. Aberrant glycosylation by OVC has been reported, but studies have yet to identify an N-glycan with sufficiently high specificity. We curated a human biorepository of 82 case-control plasma samples, with 27%, 12%, 46%, and 15% falling across stages I-IV, respectively. For relative quantitation, glycans were analyzed by the individuality normalization when labeling with glycan hydrazide tags (INLIGHT) strategy for enhanced electrospray ionization, MS/MS analysis. Sixty-three glycan cancer burden ratios (GBRs), defined as the log10 ratio of the case-control extracted ion chromatogram abundances, were calculated above the limit of detection. The final GBR models, built using stepwise forward regression, included three significant terms: OVC stage, normalized mean GBR, and tag chemical purity; glycan class, fucosylation, or sialylation were not significant variables. After Bonferroni correction, seven N-glycans were identified as significant (p < 0.05), and after false discovery rate correction, an additional four glycans were determined to be significant (p < 0.05), with one borderline (p = 0.05). For all N-glycans, the vectors of the effects from stages II-IV were sequentially reversed, suggesting potential biological changes in OVC morphology or in host response.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Polissacarídeos/sangue , Sequência de Carboidratos , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Feminino , Fucose/sangue , Glicosilação , Humanos , Hidrazinas/química , Dados de Sequência Molecular , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Ácidos Siálicos/sangue , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos
11.
Anal Chem ; 87(14): 7305-12, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26086806

RESUMO

High-throughput, quantitative processing of N-linked glycans would facilitate large-scale studies correlating the glycome with disease and open the field to basic and applied researchers. We sought to meet these goals by coupling filter-aided-N-glycan separation (FANGS) to the individuality normalization when labeling with glycan hydrazide tags (INLIGHT) for analysis of plasma. A quantitative comparison of this method was conducted against solid phase extraction (SPE), a ubiquitous and trusted method for glycan purification. We demonstrate that FANGS-INLIGHT purification was not significantly different from SPE in terms of glycan abundances, variability, functional classes, or molecular weight distributions. Furthermore, to increase the depth of glycome coverage, we executed a definitive screening design of experiments (DOE) to optimize the MS parameters for glycan analyses. We optimized MS parameters across five N-glycan responses using a standard glycan mixture, translated these to plasma and achieved up to a 3-fold increase in ion abundances.


Assuntos
Polissacarídeos/isolamento & purificação , Extração em Fase Sólida , Animais , Galinhas , Desenho de Equipamento , Espectrometria de Massas/instrumentação , Polissacarídeos/sangue , Extração em Fase Sólida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...