Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Gastroenterology ; 163(5): 1321-1333, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948108

RESUMO

BACKGROUND & AIMS: There is debate whether atypical enteropathogenic Escherichia coli (aEPEC) causes disease in adults. aEPEC is commonly detected in symptomatic and asymptomatic individuals. aEPEC, in contrast to typical EPEC, lacks bundle-forming pili, altering its pathogenicity. Here, we define for the first time the clinical manifestations of sporadic aEPEC infection in United States children and adults and determine whether EPEC load correlates with disease. METHODS: This is a retrospective case-control study of 380 inpatients/outpatients of all ages. EPEC load in stools was determined by quantitative polymerase chain reaction. RESULTS: Diarrhea, vomiting, abdominal pain, and fever were more prevalent in EPEC-positive cases than in EPEC-negative controls. aEPEC infection caused mostly acute, mild diarrhea lasting for 6 to 13 days. However, some had severe diarrhea with 10 to 40 bowel movements per day or had persistent/chronic diarrhea. Fever, vomiting, and abnormal serum sodium levels were more common in children. Adults more often reported abdominal pain and longer duration of diarrhea. Symptomatic aEPEC infection was associated with leukocytosis in 24% of patients. EPEC load >0.1% was associated with symptomatic infection; however, loads varied greatly. Co-infecting pathogens did not alter diarrhea severity or EPEC load. Longitudinal data reveal that some are colonized for months to years or are repeatedly infected. CONCLUSIONS: aEPEC is associated with a wide array of symptoms in adults, ranging from asymptomatic carriage to severe diarrhea. Higher EPEC loads are associated with presence of symptoms, but bacterial load does not predict disease or severity. Future studies are needed to understand bacterial and host factors that contribute to aEPEC pathogenicity to improve diagnostic tools and clinical care.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Enteropatias , Criança , Humanos , Dor Abdominal/epidemiologia , Estudos de Casos e Controles , Diarreia/diagnóstico , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Estudos Retrospectivos , Sódio , Estados Unidos/epidemiologia , Vômito/etiologia , Adulto
3.
Ann N Y Acad Sci ; 1515(1): 97-104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35710871

RESUMO

During migration, cells invade, repair, and create barriers leading to the formation of new cellular contacts in target tissues. Cell migration requires many proteins that collectively form the cytoskeleton. The main cytoskeletal elements are actin filaments, microtubules (MTs), and intermediate filaments. These structures work in concert with a large number of accessory proteins that contribute in a variety of ways to regulate filament assembly and turnover, to alter the configuration or arrangement of filaments by bundling or crosslinking, to link the cytoskeleton to other structures in the cell, such as membranes and junctions, and to transport cargo along the filaments. Sperm flagella protein-1 (Spef1), also designated calponin homology and microtubules-associated protein (CLAMP), is a multifunctional protein that interacts with cytoskeletal structures, including MTs, actin filaments, and focal adhesions in epithelia. In this review, we outline Spef1/CLAMP structure and expression in several cellular models. The function of Spef1/CLAMP in flagellar and ciliary motility, MT-binding and stability, regulation of planar cell polarity, and potential contribution to the maintenance of actin-based structures, such as lamellipodia and filopodia during cell migration, are also discussed.


Assuntos
Actinas , Polaridade Celular , Actinas/metabolismo , Proteínas de Ligação ao Cálcio , Movimento Celular , Humanos , Masculino , Proteínas dos Microfilamentos , Microtúbulos/metabolismo , Sêmen/metabolismo , Calponinas
4.
Gut Microbes ; 12(1): 1-21, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33131419

RESUMO

Infectious diarrhea causes approximately 179 million illnesses annually in the US. Multiplex PCR assays for enteric pathogens detect enteropathogenic Escherichia coli (EPEC) in 12-29% of diarrheal stool samples from all age groups in developed nations. The aim of this study was to isolate and characterize EPEC from diarrhea samples identified as EPEC positive by BioFire Gastrointestinal Panel (GIP). EPEC is the second most common GIP-detected pathogen, equally present in sole and mixed infections peaking during summer months. EPEC bacterial load is higher in samples with additional pathogens. EPEC-GIP-positive stool samples were cultured on MacConkey II agar and analyzed by colony PCR for eaeA and bfpA to identify and classify EPEC isolates as typical (tEPEC) or atypical (aEPEC). EPEC were not recovered from the majority of stool samples with only 61 isolates obtained from 277 samples; most were aEPEC from adults. bfpA-mRNA was severely diminished in 3 of 4 bfpA-positive isolates. HeLa and SKCO-15 epithelial cells were infected with EPEC isolates and virulence-associated phenotypes, including adherence pattern, attachment level, pedestal formation, and tight junction disruption, were assessed. All aEPEC adherence patterns were represented with diffuse adherence predominating. Attachment rates of isolates adhering with defined adherence patterns were higher than tEPEC lacking bfpA (ΔbfpA). The majority of isolates formpedestals. All but one isolate initially increases but ultimately decreases transepithelial electrical resistance of SKCO-15 monolayers, similar to ΔbfpA. Most isolates severely disrupt occludin; ZO-1 disruption is variable. Most aEPEC isolates induce more robust virulence-phenotypes in vitro than ΔbfpA, but less than tEPEC-E2348/69.


Assuntos
Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Gastroenterite/microbiologia , Fatores de Virulência/genética , Adesinas Bacterianas/genética , Adulto , Aderência Bacteriana/fisiologia , Carga Bacteriana , Linhagem Celular Tumoral , Diarreia/microbiologia , Escherichia coli Enteropatogênica/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Genoma Bacteriano/genética , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
5.
Open Forum Infect Dis ; 7(5): ofaa114, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32405509

RESUMO

The leading risk factor for Clostridioides (Clostridium) difficile infection (CDI) is broad-spectrum antibiotics, which lead to low microbial diversity, or dysbiosis. Current therapeutic strategies for CDI are insufficient, as they do not address the key role of the microbiome in preventing C. difficile spore germination into toxin-producing vegetative bacteria, which leads to symptomatic disease. Fecal microbiota transplant (FMT) appears to reduce the risk of recurrent CDI through microbiome restoration. However, a wide range of efficacy rates have been reported, and few placebo-controlled trials have been conducted, limiting our understanding of FMT efficacy and safety. We discuss the current knowledge gaps driven by questions around the quality and consistency of clinical trial results, patient selection, diagnostic methodologies, use of suppressive antibiotic therapy, and methods for adverse event reporting. We provide specific recommendations for future trial designs of FMT to provide improved quality of the clinical evidence to better inform treatment guidelines.

6.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947656

RESUMO

Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell-cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Proteína Quinase C/metabolismo , Junções Íntimas/metabolismo , Animais , Biomarcadores , Comunicação Celular , Polaridade Celular , Modelos Animais de Doenças , Infecções por Escherichia coli/patologia , Imunofluorescência , Humanos , Mucosa Intestinal/patologia , Camundongos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Nexinas de Classificação/química , Nexinas de Classificação/metabolismo
8.
Gastroenterology ; 157(6): 1544-1555.e3, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31473225

RESUMO

BACKGROUND & AIMS: Sperm flagellar 1 (also called CLAMP) is a microtubule-associated protein that regulates microtubule dynamics and planar cell polarity in multi-ciliated cells. We investigated the localization and function of sperm flagellar 1, or CLAMP, in human intestinal epithelia cells (IECs). METHODS: We performed studies with SKCO-15 and human intestinal enteroids established from biopsies from different intestinal segments (duodenal, jejunum, ileal, and colon) of a single donor. Enteroids were induced to differentiation after incubation with growth factors. The distribution of endogenous CLAMP in IECs was analyzed by immunofluorescence microscopy using total internal reflection fluorescence-ground state depletion and confocal microscopy. CLAMP localization was followed during the course of intestinal epithelial cell polarization as cells progressed from flat to compact, confluent monolayers. Protein interactions with endogenous CLAMP were determined in SKCO-15 cells using proximity ligation assays and co-immunoprecipitation. CLAMP was knocked down in SKCO-15 monolayers using small hairpin RNAs and cells were analyzed by immunoblot and immunofluorescence microscopy. The impact of CLAMP knock-down in migrating SKCO-15 cells was assessed using scratch-wound assays. RESULTS: CLAMP bound to actin and apical junctional complex proteins but not microtubules in IECs. In silico analysis predicted the calponin-homology domain of CLAMP to contain conserved amino acids required for actin binding. During IEC polarization, CLAMP distribution changed from primarily basal stress fibers and cytoplasm in undifferentiated cells to apical membranes and microvilli in differentiated monolayers. CLAMP accumulated in lamellipodia and filopodia at the leading edge of migrating cells in association with actin. CLAMP knock-down reduced the number of filopodia, perturbed filopodia polarity, and altered the organization of actin filaments within lamellipodia. CONCLUSIONS: CLAMP is an actin-binding protein, rather than a microtubule-binding protein, in IECs. CLAMP distribution changes during intestinal epithelial cell polarization, regulates the formation of filopodia, and appears to assist in the organization of actin bundles within lamellipodia of migrating IECs. Studies are needed to define the CLAMP domains that interact with actin and whether its loss from IECs affects intestinal function.


Assuntos
Actinas/metabolismo , Movimento Celular , Mucosa Intestinal/citologia , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Colo/citologia , Colo/metabolismo , Células Epiteliais , Humanos , Mucosa Intestinal/metabolismo , Microtúbulos/metabolismo
9.
Ann N Y Acad Sci ; 1405(1): 16-24, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28628193

RESUMO

Epithelial cells constitute a physical barrier that aids in protecting the host from microbial pathogens. Polarized epithelial cells contain distinct apical and basolateral membrane domains separated by intercellular junctions, including tight junctions (TJs), which contribute to the maintenance of apical-basal polarity. Polarity complexes also contribute to the establishment of TJ formation. Several pathogens perturb epithelial TJ barrier function and structure in addition to causing a loss of apical-basal polarity. Here, we review the impact of pathogenic bacteria on the disruption of cell-cell junctions and epithelial polarity.


Assuntos
Polaridade Celular/fisiologia , Células Epiteliais/citologia , Escherichia coli , Proteínas de Membrana/metabolismo , Junções Íntimas/microbiologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Junções Íntimas/metabolismo
10.
Cell Microbiol ; 19(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28618099

RESUMO

Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins ß1-integrin and Na+ /K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+ /K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+ /K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.


Assuntos
Proteínas de Transporte/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Nexinas de Classificação/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Diarreia/microbiologia , Diarreia/patologia , Cães , Dinaminas/antagonistas & inibidores , Endocitose/fisiologia , Células Epiteliais/fisiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Humanos , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Células Madin Darby de Rim Canino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Sulfato , Junções Íntimas/metabolismo , Sistemas de Secreção Tipo III/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 312(5): G443-G449, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28209599

RESUMO

Enteropathogenic Escherichia coli (EPEC), one of the diarrheagenic E. coli pathotypes, is among the most important food-borne pathogens infecting children worldwide. Inhibition of serotonin transporter (SERT), which regulates extracellular availability of serotonin (5-HT), has been implicated previously in EPEC-associated diarrhea. EPEC was shown to inhibit SERT via activation of protein tyrosine phosphatase (PTPase), albeit the specific PTPase involved is not known. Current studies aimed to identify EPEC-activated PTPase and its role in SERT inhibition. Infection of Caco-2 monolayers with EPEC strain E2348/69 for 30 min increased the activity of Src-homology-2 domain containing PTPase (SHP2) but not SHP1 or PTPase 1B. Similarly, Western blot studies showed increased tyrosine phosphorylation of (p-tyrosine) SHP2, indicative of its activation. Concomitantly, EPEC infection decreased SERT p-tyrosine levels. This was associated with increased interaction of SHP2 with SERT, as evidenced by coimmunoprecipitation studies. To examine whether SHP2 directly influences SERT phosphorylation status or function, SHP2 cDNA plasmid constructs (wild type, constitutively active, or dominant negative) were overexpressed in Caco-2 cells by Amaxa electroporation. In the cells overexpressing constitutively active SHP2, SERT polypeptide showed complete loss of p-tyrosine. In addition, there was a decrease in SERT function, as measured by Na+Cl--sensitive [3H]5-HT uptake, and an increase in association of SERT with SHP2 in Caco-2 cells expressing constitutively active SHP2 compared with dominant-negative SHP2. Our data demonstrate that intestinal SERT is a target of SHP2 and reveal a novel mechanism by which a common food-borne pathogen uses cellular SHP2 to inhibit SERT.NEW & NOTEWORTHY The data presented in the current study reveal that intestinal serotonin transporter (SERT) is a target of the tyrosine phosphatase SHP2 and show a novel mechanism by which a common diarrheagenic pathogen, EPEC, activates cellular SHP2 to inhibit SERT function. These studies highlight host-pathogen interactions, which may be of therapeutic relevance in the management of diarrhea associated with enteric infections.


Assuntos
Enterócitos/metabolismo , Enterócitos/microbiologia , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Células CACO-2 , Humanos
13.
Am J Physiol Cell Physiol ; 309(12): C835-46, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26447204

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a food-borne pathogen that causes infantile diarrhea worldwide. EPEC decreases the activity and surface expression of the key intestinal Cl(-)/HCO3(-) exchanger SLC26A3 [downregulated in adenoma (DRA)], contributing to the pathophysiology of early diarrhea. Little is known about the mechanisms governing membrane recycling of DRA. In the current study, Caco-2 cells were used to investigate DRA trafficking under basal conditions and in response to EPEC. Apical Cl(-)/HCO3(-) exchange activity was measured as DIDS-sensitive (125)I(-) uptake. Cell surface biotinylation was performed to assess DRA endocytosis and exocytosis. Inhibition of clathrin-mediated endocytosis by chlorpromazine (60 µM) increased apical Cl(-)/HCO3(-) exchange activity. Dynasore, a dynamin inhibitor, also increased function and surface levels of DRA via decreased endocytosis. Perturbation of microtubules by nocodazole revealed that intact microtubules are essential for basal exocytic (but not endocytic) DRA recycling. Mice treated with colchicine showed a decrease in DRA surface levels as visualized by confocal microscopy. In response to EPEC infection, DRA surface expression was reduced partly via an increase in DRA endocytosis and a decrease in exocytosis. These effects were dependent on the EPEC virulence genes espG1 and espG2. Intriguingly, the EPEC-induced decrease in DRA function was unaltered in the presence of dynasore, suggesting a clathrin-independent internalization of surface DRA. In conclusion, these studies establish the role of clathrin-mediated endocytosis and microtubules in the basal surface expression of DRA and demonstrate that the EPEC-mediated decrease in DRA function and apical expression in Caco-2 cells involves decreased exocytosis.


Assuntos
Antiporters/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Escherichia coli Enteropatogênica , Infecções por Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Animais , Western Blotting , Células CACO-2 , Clatrina/metabolismo , Endocitose/fisiologia , Exocitose/fisiologia , Imunofluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Sulfato
14.
Infect Immun ; 82(9): 3713-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24958711

RESUMO

Attachment of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells is critical for colonization and is associated with localized actin assembly beneath bound bacteria. The formation of these actin "pedestals" is dependent on the translocation of effectors into mammalian cells via a type III secretion system (T3SS). Tir, an effector required for pedestal formation, localizes in the host cell plasma membrane and promotes attachment of bacteria to mammalian cells by binding to the EHEC outer surface protein Intimin. Actin pedestal formation has been shown to foster intestinal colonization by EHEC in some animal models, but the mechanisms responsible for this remain undefined. Investigation of the role of Tir-mediated actin assembly promoting host cell binding is complicated by other, potentially redundant EHEC-encoded binding pathways, so we utilized cell binding assays that specifically detect binding mediated by Tir-Intimin interaction. We also assessed the role of Tir-mediated actin assembly in two-step assays that temporally segregated initial translocation of Tir from subsequent Tir-Intimin interaction, thereby permitting the distinction of effects on translocation from effects on cell attachment. In these experimental systems, we compromised Tir-mediated actin assembly by chemically inhibiting actin assembly or by infecting mammalian cells with EHEC mutants that translocate Tir but are specifically defective in Tir-mediated pedestal formation. We found that an inability of Tir to promote actin assembly resulted in a significant and striking decrease in bacterial binding mediated by Tir and Intimin. Bacterial mutants defective for pedestal formation translocated type III effectors to mammalian cells with reduced efficiency, but the decrease in translocation could be entirely accounted for by the decrease in host cell attachment.


Assuntos
Actinas/metabolismo , Aderência Bacteriana/fisiologia , Translocação Bacteriana/fisiologia , Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Escherichia coli/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligação Proteica/fisiologia
15.
Cell Microbiol ; 16(12): 1767-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24948117

RESUMO

Enteropathogenic Escherichia coli (EPEC) uses a type 3 secretion system to transfer effector proteins into the host intestinal epithelial cell. Several effector molecules contribute to tight junction disruption including EspG1 and its homologue EspG2 via a mechanism thought to involve microtubule destruction. The aim of this study was to investigate the contribution of EspG-mediated microtubule disruption to TJ perturbation. We demonstrate that wild type EPEC infection disassembles microtubules and induces the progressive movement of occludin away from the membrane and into the cytosol. Deletion of espG1/G2 attenuates both of these phenotypes. In addition, EPEC infection impedes barrier recovery from calcium switch, suggesting that inhibition of TJ restoration, not merely disruption, prolongs barrier loss. TJs recover more rapidly following infection with ΔespG1/G2 than with wild type EPEC, demonstrating that EspG1/G2 perpetuate barrier loss. Although EspG regulates ADP-ribosylation factor (ARF) and p21-activated kinase (PAK), these activities are not necessary for microtubule destruction or perturbation of TJ structure and function. These data strongly support a role for EspG1/G2 and its associated effects on microtubules in delaying the recovery of damaged tight junctions caused by EPEC infection.


Assuntos
Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Junções Íntimas/fisiologia , Fatores de Virulência/metabolismo , Escherichia coli Enteropatogênica/metabolismo
16.
Am J Physiol Cell Physiol ; 307(3): C245-54, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24920678

RESUMO

Epithelial tight junctions are critical for creating a barrier yet allowing paracellular transport. Although it is well established that the actin cytoskeleton is critical for preserving the dynamic organization of the tight junction and maintaining normal tight junction protein recycling, contributions of microtubules to tight junction organization and function remain undefined. The aim of this study is to determine the role of microtubules in tight junction homeostasis and restoration. Our data demonstrate that occludin traffics on microtubules and that microtubule disruption perturbs tight junction structure and function. Microtubules are also shown to be required for restoring barrier function following Ca(2+) chelation and repletion. These processes are mediated by proteins participating in microtubule minus-end-directed trafficking but not plus-end-directed trafficking. These studies show that microtubules participate in the preservation of epithelial tight junction structure and function and play a vital role in tight junction restoration, thus expanding our understanding of the regulation of tight junction physiology.


Assuntos
Epitélio/metabolismo , Microtúbulos/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo , Citoesqueleto de Actina/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Compostos de Benzil/farmacologia , Células CACO-2 , Cálcio/química , Linhagem Celular Tumoral , Cães , Complexo Dinactina , Dineínas/antagonistas & inibidores , Dineínas/genética , Dineínas/metabolismo , Células Epiteliais/metabolismo , Complexo de Golgi/genética , Homeostase , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Células Madin Darby de Rim Canino , Proteínas Associadas aos Microtúbulos/genética , Nocodazol/farmacologia , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Moduladores de Tubulina/farmacologia
18.
Ann N Y Acad Sci ; 1258: 149-58, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22731728

RESUMO

Enteropathogenic E. coli (EPEC) infection is a major cause of infantile diarrhea in the developing world. Using a type-three secretion system, bacterial effector proteins are transferred to the host cell cytosol where they affect multiple physiological functions, ultimately leading to diarrheal disease. Disruption of intestinal epithelial cell tight junctions is a major consequence of EPEC infection and is mediated by multiple effector proteins, among them EspG1 and its homologue EspG2. EspG1/G2 contribute to loss of barrier function via an undefined mechanism that may be linked to their disruption of microtubule networks. Recently new investigations have identified additional roles for EspG. Sequestration of active ADP-ribosylating factor (ARF) proteins and promotion of p21-activated kinase (PAK) activity as well as inhibition of Golgi-mediated protein secretion have all been linked to EspG. In this review, we examine the functions of EspG1/G2 and discuss potential mechanisms of EspG-mediated tight junction disruption.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Junções Íntimas , Proteínas Associadas aos Microtúbulos
19.
Am J Physiol Gastrointest Liver Physiol ; 302(10): G1216-22, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22403793

RESUMO

Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Sódio/metabolismo , Simportadores/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/fisiologia , Células CACO-2 , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/genética , Inibidores Enzimáticos/farmacologia , Infecções por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Mutação , Proteínas Tirosina Fosfatases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...