Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Math Biol ; 85(2): 16, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35882658

RESUMO

We introduce two 2D mechanical models reproducing the evolution of two viscous tissues in contact. Their main property is to model the swirling cell motions while keeping the tissues segregated, as observed during vertebrate embryo elongation. Segregation is encoded differently in the two models: by passive or active segregation (based on a mechanical repulsion pressure). We formally compute the incompressible limits of the two models, and obtain strictly segregated solutions. The two models thus obtained are compared. A striking feature in the active segregation model is the persistence of the repulsion pressure at the limit: a ghost effect is discussed and confronted to the biological data. Thanks to a transmission problem formulation at the incompressible limit, we show a pressure jump at the tissues' boundaries.


Assuntos
Modelos Biológicos , Viscosidade
2.
Curr Biol ; 32(9): 2076-2083.e2, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35338851

RESUMO

As organs and tissues approach their normal size during development or regeneration, growth slows down, and cell proliferation progressively comes to a halt. Among the various processes suggested to contribute to growth termination,1-10 mechanical feedback, perhaps via adherens junctions, has been suggested to play a role.11-14 However, since adherens junctions are only present in a narrow plane of the subapical region, other structures are likely needed to sense mechanical stresses along the apical-basal (A-B) axis, especially in a thick pseudostratified epithelium. This could be achieved by nuclei, which have been implicated in mechanotransduction in tissue culture.15 In addition, mechanical constraints imposed by nuclear crowding and spatial confinement could affect interkinetic nuclear migration (IKNM),16 which allows G2 nuclei to reach the apical surface, where they normally undergo mitosis.17-25 To explore how mechanical constraints affect IKNM, we devised an individual-based model that treats nuclei as deformable objects constrained by the cell cortex and the presence of other nuclei. The model predicts changes in the proportion of cell-cycle phases during growth, which we validate with the cell-cycle phase reporter FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indicator).26 However, this model does not preclude indefinite growth, leading us to postulate that nuclei must migrate basally to access a putative basal signal required for S phase entry. With this refinement, our updated model accounts for the observed progressive slowing down of growth and explains how pseudostratified epithelia reach a stereotypical thickness upon completion of growth.


Assuntos
Mecanotransdução Celular , Mitose , Ciclo Celular , Núcleo Celular/metabolismo , Epitélio/metabolismo
3.
Math Biosci Eng ; 17(6): 6873-6908, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378880

RESUMO

To model the morphogenesis of rod-shaped bacterial micro-colony, several individual-based models have been proposed in the biophysical literature. When studying the shape of micro-colonies, most models present interaction forces such as attraction or filial link. In this article, we propose a model where the bacteria interact only through non-overlapping constraints. We consider the asymmetry of the bacteria, and its influence on the friction with the substrate. Besides, we consider asymmetry in the mass distribution of the bacteria along their length. These two new modelling assumptions allow us to retrieve mechanical behaviours of micro-colony growth without the need of interaction such as attraction. We compare our model to various sets of experiments, discuss our results, and propose several quantifiers to compare model to data in a systematic way.


Assuntos
Bactérias , Modelos Biológicos , Morfogênese
4.
Math Biosci Eng ; 16(5): 5804-5835, 2019 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-31499739

RESUMO

This paper proposes a model for the growth of two interacting populations of cells that do not mix. The dynamics is driven by pressure and cohesion forces on the one hand and proliferation on the other hand. Contrasting with earlier works which assume that the two populations are initially segregated, our model can deal with initially mixed populations as it explicitly incorporates a repul-sion force that enforces segregation. To balance segregation instabilities potentially triggered by the repulsion force, our model also incorporates a fourth order diffusion. In this paper, we study the influ-ence of the model parameters thanks to one-dimensional simulations using a finite-volume method for a relaxation approximation of the fourth order diffusion. Then, following earlier works on the single population case, we provide formal arguments that the model approximates a free boundary Hele Shaw type model that we characterise using both analytical and numerical arguments.


Assuntos
Proliferação de Células , Epitélio/fisiologia , Neoplasias/fisiopatologia , Fenômenos Biológicos , Simulação por Computador , Biologia do Desenvolvimento , Elasticidade , Epiderme/fisiopatologia , Humanos , Modelos Biológicos , Modelos Teóricos , Porosidade , Estresse Mecânico
5.
Commun Math Sci ; 15(7): 1913-1932, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104514

RESUMO

A mathematical model for tissue growth is considered. This model describes the dynamics of the density of cells due to pressure forces and proliferation. It is known that such cell population model converges at the incompressible limit towards a Hele-Shaw type free boundary problem. The novelty of this work is to impose a non-overlapping constraint. This constraint is important to be satisfied in many applications. One way to guarantee this non-overlapping constraint is to choose a singular pressure law. The aim of this paper is to prove that, although the pressure law has a singularity, the incompressible limit leads to the same Hele-Shaw free boundary problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...