Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(3): 1716-1723, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29265133

RESUMO

Glycerol-water mixtures were studied at molar concentrations ranging from xgly = 1 (neat glycerol) to xgly = 0.3 using shear mechanical spectroscopy. We observed a low frequency mode in neat glycerol, similar to what has been reported for monohydroxy alcohols. This mode has no dielectric counterpart and disappears with increased water concentration. We propose that the hydrogen-bonded network formed between glycerol molecules is responsible for the observed slow mode and that water acts as a plasticizer for the overall dynamics and as a lubricant softening the hydrogen-bonding contribution to the macroscopic viscosity of this binary system.

2.
J Chem Phys ; 143(18): 181102, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567636

RESUMO

In this paper, we present results of dielectric and shear-mechanical studies for amine (2-ethyl-1-hexylamine) and thiol (2-ethyl-1-hexanethiol) derivatives of the monohydroxy alcohol, 2-ethyl-1-hexanol. The amine and thiol can form hydrogen bonds weaker in strength than those of the alcohol. The combination of dielectric and shear-mechanical data enables us to reveal the presence of a relaxation mode slower than the α-relaxation. This mode is analogous to the Debye mode seen in monohydroxy alcohols and demonstrates that supramolecular structures are present for systems with lower hydrogen bonding strength. We report some key features accompanying the decrease in the strength of the hydrogen bonding interactions on the relaxation dynamics close to the glass-transition. This includes changes (i) in the amplitude of the Debye and α-relaxations and (ii) the separation between primary and secondary modes.

3.
J Chem Phys ; 143(13): 134501, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26450317

RESUMO

Isothermal crystallization of the mono-hydroxyl alcohol n-butanol was studied with dielectric spectroscopy in real time. The crystallization was carried out using two different sample cells at 15 temperatures between 120 K and 134 K. Crystallization is characterized by a decrease of the dielectric intensity. In addition, a shift in relaxation times to shorter times was observed during the crystallization process for all studied temperatures. The two different sample environments induced quite different crystallization behaviors, consistent and reproducible over all studied temperatures. An explanation for the difference was proposed on the background of an Avrami analysis and a Maxwell-Wagner analysis. Both types of analysis suggest that the morphology of the crystal growth changes from a higher dimension to a lower at a point during the crystallization. More generally, we conclude that a microscopic interpretation of crystallization measurements requires multiple probes, sample cells, and protocols.

4.
Phys Rev Lett ; 112(9): 098301, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655283

RESUMO

Liquids composed of small-molecule monohydroxy alcohols are demonstrated to display rheological behavior typical for oligomeric chains. This observation was made possible by rheological experiments in which more than seven decades in frequency and more than five decades on the mechanical modulus scale are covered. The singly hydrogen-bonded monohydroxy alcohols were chosen because they display significant, but surprisingly poorly understood effects of intermolecular association. Based on the present shear study, one can apply theoretical concepts of polymer science to understand the anomalous physical behavior of a wide range of hydrogen-bonded liquids.


Assuntos
Heptanol/química , Hexanóis/química , Módulo de Elasticidade , Ligação de Hidrogênio , Modelos Moleculares , Reologia/métodos , Viscosidade
5.
J Chem Phys ; 139(13): 134503, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24116571

RESUMO

The relatively small dielectric Debye-like process of the monohydroxy alcohol 4-methyl-3-heptanol (4M3H) was found to depend slightly on the intramolecular conformation. Proton and deuteron nuclear magnetic resonance demonstrate that the hydroxyl dynamics and the overall molecular dynamics take place on similar time scales in contrast to the situation for the structural isomer 2-ethyl-1-hexanol (2E1H) [S. Schildmann et al., J. Chem. Phys. 135, 174511 (2011)]. This indicates a very weak decoupling of Debye-like and structural relaxation which was further probed using volume expansivity experiments. Shear viscosity as well as diffusometry measurements were performed and the data were analyzed in terms of the Debye-Stokes-Einstein equations. In mixtures of 4M3H with 2E1H the Debye-like process becomes much stronger and for 2E1H mole fraction of more than 25% the behavior of this alcohol is rapidly approached. This finding is interpreted to indicate that the ring-like supramolecular structures in 4M3H become energetically unfavorable when adding 2E1H, an alcohol that tends to form chain-like molecular aggregates. The concentration dependence of the Kirkwood factor in these mixtures displays a high degree of similarity with experimental results on monohydroxy alcohols in which the pressure or the location of the OH group within the molecular structure is varied.

6.
J Chem Phys ; 137(14): 144502, 2012 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23061850

RESUMO

Binary solutions of 2-ethyl-1-hexanol (2E1H) with 2-ethyl-1-hexyl bromide (2E1Br) are investigated by means of dielectric, shear mechanical, near-infrared, and solvation spectroscopy as well as dielectrically monitored physical aging. For moderately diluted 2E1H the slow Debye-like process, which dominates the dielectric spectra of the neat monohydroxy alcohol, separates significantly from the α-relaxation. For example, the separation in equimolar mixtures amounts to four decades in frequency. This situation of highly resolved processes allows one to demonstrate unambiguously that physical aging is governed by the α-process, but even under these ideal conditions the Debye process remains undetectable in shear mechanical experiments. Furthermore, the solvation experiments show that under constant charge conditions the microscopic polarization fluctuations take place on the time scale of the structural process. The hydrogen-bond populations monitored via near-infrared spectroscopy indicate the presence of a critical alcohol concentration, x(c) ≈ 0.5-0.6, thereby confirming the dielectric data. In the pure bromide a slow dielectric process of reduced intensity is present in addition to the main relaxation. This is taken as a sign of intermolecular cooperativity probably mediated via halogen bonds.


Assuntos
Hexanóis/química , Hidrocarbonetos Bromados/química , Ligação de Hidrogênio , Resistência ao Cisalhamento , Solventes/química , Fatores de Tempo , Vibração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...