Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 13447-13457, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524494

RESUMO

Herein, we report a general route for the uniform coating of hard carbon (HC) powders via fluidized bed chemical vapor deposition. Carbon-based fine powders are excellent substrate materials for many catalytic and electrochemical applications but intrinsically difficult to fluidize and prone to elutriation. The reactor was designed to achieve as much retention of powders as possible, supported by a computational fluid dynamics study to assess the hydrodynamic behavior for varying gaseous flow rates. Solutions of the tin seleno- and thio-ether complexes [SnCl4{nBuSe(CH2)3SenBu}] and [SnCl4{nBuS(CH2)3SnBu}] were used as single source precursors and injected at high temperature into a fluidized bed of HC powders under nitrogen flow. The method allowed for the synthesis of HC-SnSx-SnSe2 composites at the gram scale with potential applications in electrocatalysis and sodium-ion battery anodes.

2.
ACS Appl Mater Interfaces ; 16(13): 16641-16652, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494599

RESUMO

In response to the growing need for efficient processing of temporal information, neuromorphic computing systems are placing increased emphasis on the switching dynamics of memristors. While the switching dynamics can be regulated by the properties of input signals, the ability of controlling it via electrolyte properties of a memristor is essential to further enrich the switching states and improve data processing capability. This study presents the synthesis of mesoporous silica (mSiO2) films using a sol-gel process, which enables the creation of films with controllable porosities. These films can serve as electrolyte layers in the diffusive memristors and lead to tunable neuromorphic switching dynamics. The mSiO2 memristors demonstrate short-term plasticity, which is essential for temporal signal processing. As porosity increases, discernible changes in operating currents, facilitation ratios, and relaxation times are observed. The underlying mechanism of such systematic control was investigated and attributed to the modulation of hydrogen-bonded networks within the porous structure of the silica layer, which significantly influences both anodic oxidation and ion migration processes during switching events. The result of this work presents mesoporous silica as a unique platform for precise control of neuromorphic switching dynamics in diffusive memristors.

3.
Nanoscale ; 16(8): 4197-4204, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38324330

RESUMO

The process of electrochemically assisted surfactant assembly was followed in real time by grazing incidence small angle X-ray scattering with the aim to deconvolute the formation of mesoporous silica film and unwanted porous particles. The X-ray technique proved to be useful for the characterisation of this process, as it takes place at a very dynamic, solid/liquid interface. This paper shows the electrochemically driven onset and evolution of silica/surfactant structures. Additional control experiments indicate the formation of vertically aligned structures without the use of an electric field, although it seems to be beneficial for increased pore ordering.

4.
RSC Adv ; 13(46): 32660-32671, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37936637

RESUMO

Fractal-like networks of gold nanoparticles created by templated electrodeposition are described. Templated electrodeposition is a powerful and efficient technique for the bottom-up fabrication of nanostructures which can effectively control the size and shape of the electrodeposits. In this work, mesoporous silica films with highly ordered mesopores and three-dimensional mesostructure are synthesised and are used as templates for the electrodeposition of gold nanoparticles. The mesoporous silica films have small mesopores (∼8 nm) and complex mesopore channels (Fmmm structure with the [0 1 0] axis perpendicular to the substrate). A variety of nucleation conditions were applied to investigate their effect on the nanoparticles' arrangement and growth in templated electrodeposition. The electrodeposited gold particles are characterised by electron microscopy and grazing incidence small-angle X-ray scattering (GISAXS). GISAXS shows changes in the lattice parameters of the mesostructure after gold electrodeposition that relate to dimensional changes in directions linked to the shortest distances between the main spherical pores. Top-view SEM shows large areas of gold nanoparticles were deposited into the film and they were growing towards the surface. After removing the silica film templates, the gold nanoparticles display interesting fractal morphologies: the linked gold nanonetworks form a branched structure. The lengths of branches vary from the applied nucleation deposition conditions. Generally, with increasing nucleation time, fractal gold nanoparticles with longer branches are more likely to be obtained.

5.
ChemSusChem ; 16(22): e202300945, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37703103

RESUMO

The effect of the partial substitution of Mo with W in Co3 Mo3 N and Ni2 Mo3 N on ammonia synthesis activity and lattice nitrogen reactivity has been investigated. This is of interest as the coordination environment of lattice N is changed by this process. When tungsten was introduced into the metal nitrides by substitution of Mo atoms, the catalytic performance was observed to have decreased. As expected, Co3 Mo3 N was reduced to Co6 Mo6 N under a 3 : 1 ratio of H2 /Ar. Co3 Mo2.6 W0.4 N was also shown to lose a large percentage of lattice nitrogen under these conditions. The bulk lattice nitrogen in Ni2 Mo3 N and Ni2 Mo2.8 W0.2 N was unreactive, demonstrating that substitution with tungsten does not have a significant effect on lattice N reactivity. Computational calculations reveal that the vacancy formation energy for Ni2 Mo3 N is more endothermic than Co3 Mo3 N. Furthermore, calculations suggest that the inclusion of W does not have a substantial impact on the surface N vacancy formation energy or the N2 adsorption and activation at the vacancy site.

6.
ACS Appl Mater Interfaces ; 15(33): 39198-39210, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552207

RESUMO

Li3N is an excellent protective coating material for lithium electrodes with very high lithium-ion conductivity and low electronic conductivity, but the formation of stable and homogeneous coatings is technically very difficult. Here, we show that protective Li3N coatings can be simply formed by the direct reaction of electrodeposited lithium electrodes with N2 gas, whereas using battery-grade lithium foil is problematic due to the presence of a native passivation layer that hampers that reaction. The protective Li3N coating is effective at preventing lithium dendrite formation, as found from unidirectional plating and plating-stripping measurements in Li-Li cells. The Li3N coating also efficiently suppresses the parasitic reactions of polysulfides and other electrolyte species with the lithium electrode, as demonstrated by scanning transmission X-ray microscopy, X-ray photoelectron spectroscopy, and optical microscopy. The protection of the lithium electrode against corrosion by polysulfides and other electrolyte species, as well as the promotion of smooth deposits without dendrites, makes the Li3N coating highly promising for applications in lithium metal batteries, such as lithium-sulfur batteries. The present findings show that the formation of Li3N can be achieved with lithium electrodes covered by a secondary electrolyte interface layer, which proves that the in situ formation of Li3N coatings inside the batteries is attainable.

7.
Nanoscale Adv ; 5(12): 3316-3325, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325528

RESUMO

Production of mesoporous silica films with vertically oriented pores has been a challenge since interest in such systems developed in the 1990s. Vertical orientation can be achieved by the electrochemically assisted surfactant assembly (EASA) method using cationic surfactants such as cetyltrimethylammonium bromide (C16TAB). The synthesis of porous silicas using a series of surfactants with increasing head sizes is described, from octadecyltrimethylammonium bromide (C18TAB) to octadecyltriethylammonium bromide (C18TEAB). These increase pore size, but the degree of hexagonal order in the vertically aligned pores reduces as the number of ethyl groups increases. Pore accessibility is also reduced with the larger head groups.

8.
Dalton Trans ; 52(2): 297-307, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36504240

RESUMO

A solvothermal method using various benzyl alcohol/water solvent mixtures has been used to synthesise phase pure nanocrystalline BaTiO3 samples with varying particle sizes in the range of 11-139 nm. The crystallite/particle size of BaTiO3 shows an overall decrease as the benzyl alcohol percentage increases, especially at higher percentages (≥80%) of benzyl alcohol. The decrease in crystallite/particle size can be attributed to the increased viscosity of the solvent mixture when raising the percentage of benzyl alcohol. A manganese oxide coating applied to the BaTiO3 surface had a negligible impact on its microstructure and morphology, but significantly enhanced the observed positive temperature coefficient of resistance. This research has been carried out to allow the development of smaller BaTiO3 particles for use in new battery, capacitor and thermistor technologies, whilst maintaining the PTCR property of the material that is typically observed in larger particle sizes.

9.
Nanoscale Adv ; 4(22): 4798-4808, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36545395

RESUMO

Metallic nanostructures have widespread applications in fields including materials science, electronics and catalysis. Mesoporous silica films synthesised by evaporation induced self-assembly and electrochemically assisted self-assembly with pores below 10 nm were used as hard templates for the electrodeposition of Au nanostructures. Electrodeposition conditions were optimised based on pore orientation and size. The growth of nanostructures was initiated at the electrode surface as confirmed by microscopy. The hard templates and Au electrodeposits were characterised electrochemically as well as with X-ray diffraction, small angle scattering and transmission electron microscopy. Finally, mesoporous silica hard templates were removed by hydrofluoric acid etching and stable Au nanoparticles on different electrode surfaces were achieved.

10.
RSC Adv ; 12(43): 27809-27819, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320257

RESUMO

Nanocrystalline BaTiO3 has been prepared by hydrothermal synthesis from titanium isopropoxide and barium hydroxide octahydrate. Reaction conditions including synthesis temperature and Ba/Ti precursor ratio have been explored with the aim of producing BaTiO3 with small crystallites and a low concentration of defects. It has been found that the crystallite/particle size and tetragonality of the BaTiO3 samples increase as the synthesis temperature increases; and the crystallite/particle size of BaTiO3 is also affected by the Ba/Ti precursor ratio. The BaTiO3 sample synthesised using a Ba/Ti precursor ratio of 2 : 1 at a reaction temperature of 120 °C exhibited homogeneous crystallites of the smallest size of 107 nm. Additionally, the Ba/Ti precursor ratio of 2 : 1 with synthesis temperature of 220 °C was found to produce a smaller concentration of defects in BaTiO3.

11.
Nanoscale ; 14(46): 17170-17181, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380717

RESUMO

Memristors are emerging as promising candidates for practical application in reservoir computing systems that are capable of temporal information processing. Here, we experimentally implement a physical reservoir computing system using resistive memristors based on three-dimensional (3D)-structured mesoporous silica (mSiO2) thin films fabricated by a low cost, fast and vacuum-free sol-gel technique. The in situ learning capability and a classification accuracy of 100% on a standard machine learning dataset are experimentally demonstrated. The volatile (temporal) resistive switching in diffusive memristors arises from the formation and subsequent spontaneous rupture of conductive filaments via diffusion of Ag species within the 3D-structured nanopores of the mSiO2 thin film. Besides volatile switching, the devices also exhibit a bipolar non-volatile resistive switching behavior when the devices are operated at a higher compliance current level. The implementation of mSiO2 thin films opens the route to fabricate a simple and low cost dynamic memristor with a temporal information process functionality, which is essential for neuromorphic computing applications.

12.
Nanoscale Adv ; 4(4): 1105-1111, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36131765

RESUMO

The combination of lithographic methods and sol gel bottom-up techniques is a promising approach for nanopatterning substrates. The integration and scalable fabrication of such substrates are of great interest for the development of nanowire-based materials opening potentialities in new technologies. We demonstrate the deposition of ordered mesoporous silica into nanopatterned silica substrates by dip coating. Using scanning electron microscopy and grazing incidence small angle X-ray scattering, the effect of the sol composition on the pore ordering was probed. Optimising the sol composition using anodic alumina membranes as confined spaces, we showed how the pH controlled the transformation from circular to columnar mesophase. Vertical mesopores were obtained with very good repeatability. The effect of the sol chemistry on the surfactant curvature was then shown to be similar in nanopatterned substrates made by e-beam lithography.

13.
Nanoscale ; 14(14): 5404-5411, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35320330

RESUMO

Silica thin films with vertical nanopores are useful to control access to electrode surfaces and may act as templates for growth of nanomaterials. The most effective method to produce these films, electrochemically assisted surfactant assembly, also produces aggregates of silica particles. This paper shows that growth with an AC signal superimposed onto the potential avoids the aggregates and only very small numbers of single particles are found. This finding is linked to better control of the diffusion field of hydroxide ions that are responsible for particle growth. The resultant films are smooth, with very well-ordered hexagonal pore structures.

14.
Langmuir ; 38(7): 2257-2266, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133847

RESUMO

The variation in pore size in mesoporous films produced by electrochemically assisted self-assembly (EASA) with the surfactant chain length is described. EASA produces a hexagonal array of pores perpendicular to the substrate surface by using an applied potential to organize cationic surfactants and the resultant current to drive condensation in a silica sol. Here, we show that a range of pore sizes between 2 and 5 nm in diameter is available with surfactants of the form [Me3NCnH2n+1]Br, with alkyl chain lengths between C14 and C24. The film quality, pore order, pore size, and pore accessibility are probed with a range of techniques.

15.
Dalton Trans ; 51(6): 2400-2412, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044401

RESUMO

WSeCl4 was obtained in good yield by heating WCl6 and Sb2Se3in vacuo. Green crystals grown by sublimation were shown by single crystal X-ray structure analysis to contain square pyramidal monomers with apical WSe, and powder X-ray diffraction (PXRD) analysis confirmed this to be the only form present in the bulk sample. Density functional theory (DFT) calculations using the B3LYP-D3 functional replicated the structure, identified the key bonding orbitals, and were used to aid assignment of the IR spectrum of WSeCl4. Reaction of WSeCl4 with ligands L gave [WSeCl4(L)] (L = MeCN, DMF, thf, py, OPPh3, 2,2'-bipy, SeMe2, SenBu2), whilst the dimers [(WSeCl4)2(µ-L-L)] were formed with L-L = Ph2P(O)CH2P(O)Ph2, 1,4-dioxane and 4,4'-bipyridyl. The complexes were characterised by microanalysis, IR and 1H NMR spectroscopy, and single crystal X-ray structures determined for [WSeCl4(L)] (L = OPPh3, MeCN, DMF) and [(WSeCl4)2(µ-L-L)] (L-L = 1,4-dioxane, 4,4'-bipyridyl). All except the 2,2'-bipy complex, which is probably seven-coordinate, contain six-coordinate tungsten with the neutral donor trans to WSe. Alkylphosphines, including PMe3 and PEt3, decompose WSeCl4 upon contact, forming phosphine selenides (SePR3). In contrast, the selenoether complexes [WSeCl4(SeMe2)] and [WSeCl4(SenBu2)] were isolated and characterised. The crystal structure of the minor W(VI) by-product, [(WSeCl4)2(µ-SeMe2)], was determined and using SMe2, a few crystals of the W(V) species, [{WCl3(SMe2)}2(µ-Se)(µ-Se2)], were obtained and structurally characterised. The isolated W(VI) complexes are compared with those of WOCl4 and WSCl4 and the combination of experimental and computational data are consistent with WSeCl4 being a weaker Lewis acid and its complexes significantly less stable than those of the lighter analogues, especially in solution. Low pressure chemical vapour deposition (LPCVD) using [WSeCl4(SenBu2)] in the range 660-700 °C (0.1 mmHg) produced highly reflective thin films, which were identified to be WSe2 by grazing incidence X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. XRD analysis of the thinner films revealed them to be highly oriented in the <00l> direction.

16.
ACS Appl Mater Interfaces ; 13(40): 47773-47783, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606236

RESUMO

The homologous series [GenBu3(EnBu)] (E = Te, Se, S; (1), (3) and (4)) and [GenBu2(TenBu)2] (2) have been synthesized as mobile oils in excellent yield (72-93%) and evaluated as single-source precursors for the low-pressure chemical vapor deposition (LPCVD) of GeE thin films on silica. Compositional and structural characterizations of the deposits have been performed by grazing-incidence X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, and Raman spectroscopy, confirming the phase purity and stoichiometry. Electrical characterization via variable-temperature Hall effect measurements is also reported. Given the strong interest in GeTe and its alloys for thermoelectric applications, variable-temperature Seebeck data were also investigated for a series of p-type GeTe films. The data show that it is possible to tune the thermoelectric response through intrinsic Ge vacancy regulation by varying the deposition temperature, with the highest power factor (40 µW/K2cm@629 K) and effective ZT values observed for the films deposited at higher temperatures.

17.
Chem Commun (Camb) ; 57(79): 10194-10197, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34519740

RESUMO

We report a simple process for the electrodeposition of tungsten disulfide thin films from a CH2Cl2-based electrolyte using a tailored single source precursor, [NEt4]2[WS2Cl4]. This new precursor incorporates the 1 : 2 W : S ratio required for formation of WS2, and eliminates the need for an additional proton source in the electrolyte to remove excess sulfide. The electrochemical behaviour of [NEt4]2[WS2Cl4] is studied by cyclic voltammetry and electrochemical quartz crystal microbalance techniques, and the WS2 thin films are grown by potentiostatic electrodeposition.

18.
Dalton Trans ; 50(3): 998-1006, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33355323

RESUMO

This work has demonstrated that the single source precursor [nBu3Sn(TenBu)], bearing n-butyl groups and containing the necessary 1 : 1 Sn : Te ratio, facilitates growth of continuous, stoichiometric SnTe thin films. This single source CVD precursor allows film growth at significantly lower temperatures (355-434 °C at 0.01-0.05 Torr) than required for CVD from SnTe powder. This could be advantageous for controlling the surface states in topological insulators. The temperature-dependent thermoelectric performance of these films has been determined, revealing them to be p-type semiconductors with peak Seebeck coefficient and power factor values of 78 µV K-1 and 8.3 µW K-2 cm-1, respectively, at 615 K; comparing favourably with data from bulk SnTe. Further, we have demonstrated that the precursor facilitates area selective growth of SnTe onto the TiN regions of SiO2/TiN patterned substrates, which is expected to be beneficial for the fabrication of micro-thermoelectric generators.

19.
ACS Appl Mater Interfaces ; 12(44): 49786-49794, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33079533

RESUMO

Heterostructures involving two-dimensional (2D) transition metal dichalcogenides and other materials such as graphene have a strong potential to be the fundamental building block of many electronic and optoelectronic applications. The integration and scalable fabrication of such heterostructures are of the essence in unleashing the potential of these materials in new technologies. For the first time, we demonstrate the growth of few-layer MoS2 films on graphene via nonaqueous electrodeposition. Through methods such as scanning and transmission electron microscopy, atomic force microscopy, Raman spectroscopy, energy- and wavelength-dispersive X-ray spectroscopies, and X-ray photoelectron spectroscopy, we show that this deposition method can produce large-area MoS2 films with high quality and uniformity over graphene. We reveal the potential of these heterostructures by measuring the photoinduced current through the film. These results pave the way toward developing the electrodeposition method for the large-scale growth of heterostructures consisting of varying 2D materials for many applications.

20.
ACS Omega ; 5(24): 14679-14688, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596605

RESUMO

We report the thermoelectric properties of Bi2Te3 thin films electrodeposited from the weakly coordinating solvent dichloromethane (CH2Cl2). It was found that the oxidation of porous films is significant, causing the degradation of its thermoelectric properties. We show that the morphology of the film can be improved drastically by applying a short initial nucleation pulse, which generates a large number of nuclei, and then growing the nuclei by pulsed electrodeposition at a much lower overpotential. This significantly reduces the oxidation of the films as smooth films have a smaller surface-to-volume ratio and are less prone to oxidation. X-ray photoelectron spectroscopy (XPS) shows that those films with Te(O) termination show a complete absence of oxygen below the surface layer. A thin film transfer process was developed using polystyrene as a carrier polymer to transfer the films from the conductive TiN to an insulating layer for thermoelectrical characterization. Temperature-dependent Seebeck measurements revealed a room-temperature coefficient of -51.7 µV/K growing to nearly -100 µV/K at 520 °C. The corresponding power factor reaches a value of 88.2 µW/mK2 at that temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...