Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 158, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879567

RESUMO

Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.


Assuntos
Animais Recém-Nascidos , Infecções por Chlamydia , Chlamydia muridarum , Animais , Camundongos , Feminino , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Masculino , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Tronco Encefálico/patologia , Doenças Neuroinflamatórias/microbiologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/imunologia , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
2.
J Neuroimmunol ; 389: 578316, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394966

RESUMO

Early life inflammation has been linked to long-term modulation of behavioural outcomes due to the central nervous system, but it is now becoming apparent it is also linked to dysfunction of visceral physiology. The medulla oblongata contains a number of nuclei critical for homeostasis, therefore we utilised the well-established model of neonatal lipopolysaccharide (LPS) exposure to examine the immediate and long-term impacts of systemic inflammation on the medulla oblongata. Wistar rats were injected with LPS or saline on postnatal days 3 and 5, with tissues collected on postnatal days 7 or 90 in order to assess expression of inflammatory mediators and microglial morphology in autonomic regions of the medulla oblongata. We observed a distinct sex-specific response of all measured inflammatory mediators at both ages, as well as significant neonatal sex differences in inflammatory mediators within saline groups. At both ages, microglial morphology had significant changes in branch length and soma size in a sex-specific manner in response to LPS exposure. This data not only highlights the strong sex-specific response of neonates to LPS administration, but also the significant life-long impact on the medulla oblongata and the potential altered control of visceral organs.


Assuntos
Lipopolissacarídeos , Bulbo , Ratos , Animais , Feminino , Masculino , Ratos Wistar , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Animais Recém-Nascidos
3.
J Neuroimmunol ; 369: 577903, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35687985

RESUMO

Immune mediators upregulated in peripheral to central immune communication can modulate respiratory function by direct action on brainstem respiratory circuits. In this systematic review we consolidated findings from independent studies examining the relationship between peripheral and neuro- inflammation within brainstem respiratory centres. Microglia and astrocytes modulate brainstem neuroinflammation in response to peripheral immune mediators which then regulates neuronal activity and ultimately respiratory behaviours. Overall, respiratory brainstem nuclei showed increases in several key immune factors, and glia showed an increased response following peripheral inflammation. However, the functional impact of this neuroinflammation remains unclear.


Assuntos
Inflamação , Centro Respiratório , Astrócitos/fisiologia , Tronco Encefálico/fisiologia , Humanos , Microglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...