Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 727118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531888

RESUMO

Heterologous synthesis of a biophysical CO2-concentrating mechanism (CCM) in plant chloroplasts offers significant potential to improve the photosynthetic efficiency of C3 plants and could translate into substantial increases in crop yield. In organisms utilizing a biophysical CCM, this mechanism efficiently surrounds a high turnover rate Rubisco with elevated CO2 concentrations to maximize carboxylation rates. A critical feature of both native biophysical CCMs and one engineered into a C3 plant chloroplast is functional bicarbonate (HCO3 -) transporters and vectorial CO2-to-HCO3 - converters. Engineering strategies aim to locate these transporters and conversion systems to the C3 chloroplast, enabling elevation of HCO3 - concentrations within the chloroplast stroma. Several CCM components have been identified in proteobacteria, cyanobacteria, and microalgae as likely candidates for this approach, yet their successful functional expression in C3 plant chloroplasts remains elusive. Here, we discuss the challenges in expressing and regulating functional HCO3 - transporter, and CO2-to-HCO3 - converter candidates in chloroplast membranes as an essential step in engineering a biophysical CCM within plant chloroplasts. We highlight the broad technical and physiological concerns which must be considered in proposed engineering strategies, and present our current status of both knowledge and knowledge-gaps which will affect successful engineering outcomes.

2.
Protoplasma ; 256(2): 521-535, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30302550

RESUMO

Mastigonemes, tripartite tubular hairs on the anterior flagellum of Phytophthora zoospores, are instrumental for disease dissemination to new host plants. A previous study showed that PnMas2 was part of the tubular shaft of Phytophthora parasitica mastigonemes. In the current study, genes encoding two related proteins, PnMas1 and PnMas3, were identified in the genome of P. parasitica. PnMas1 interacts with PnMas2 and also occurs along the mastigoneme shaft. RNA-Seq analyses indicate that PnMas1 and PnMas2 genes have similar expression profiles both in vitro and in planta but that PnMas3 is expressed temporally prior to PnMas1 and PnMas2 during asexual development and plant infection. Immunocytochemistry and GFP-tagging document the occurrence of all three PnMas proteins within the specialised compartments of the ER during mastigoneme formation, but only PnMas1 and PnMas2 occur in mature mastigonemes on the flagellar surface. Anti-PnMas1 and anti-PnMas2 antibodies co-labelled two high-molecular-weight (~400 kDa) protein complexes in native gels but anti-PnMas3 antibodies labelled a 65 kDa protein complex. Liquid chromatography-mass spectrometry analysis identified PnMas1 and PnMas2 but not PnMas3 in flagellar extracts. These results suggest that PnMas3 associates with mastigonemes during their assembly within the ER but is not part of mature mastigonemes on the anterior flagellum. Phylogenetic analyses using homologues of Mas genes from the genomes of 28 species of Stramenopiles give evidence of three Mas sub-families, namely Mas1, Mas2 and Mas3. BLAST analyses showed that Mas genes only occur in flagellate species within the Stramenopile taxon.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Phytophthora/química , Proteínas/metabolismo , Estramenópilas/química
3.
Nat Commun ; 9(1): 3570, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177711

RESUMO

A long-term strategy to enhance global crop photosynthesis and yield involves the introduction of cyanobacterial CO2-concentrating mechanisms (CCMs) into plant chloroplasts. Cyanobacterial CCMs enable relatively rapid CO2 fixation by elevating intracellular inorganic carbon as bicarbonate, then concentrating it as CO2 around the enzyme Rubisco in specialized protein micro-compartments called carboxysomes. To date, chloroplastic expression of carboxysomes has been elusive, requiring coordinated expression of almost a dozen proteins. Here we successfully produce simplified carboxysomes, isometric with those of the source organism Cyanobium, within tobacco chloroplasts. We replace the endogenous Rubisco large subunit gene with cyanobacterial Form-1A Rubisco large and small subunit genes, along with genes for two key α-carboxysome structural proteins. This minimal gene set produces carboxysomes, which encapsulate the introduced Rubisco and enable autotrophic growth at elevated CO2. This result demonstrates the formation of α-carboxysomes from a reduced gene set, informing the step-wise construction of fully functional α-carboxysomes in chloroplasts.


Assuntos
Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Cianobactérias/genética , Nicotiana/metabolismo , Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Bicarbonatos/metabolismo , Ciclo do Carbono , Plantas Geneticamente Modificadas
4.
J Exp Bot ; 68(14): 3717-3737, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444330

RESUMO

Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.


Assuntos
Cianobactérias/genética , Embriófitas/genética , Fotossíntese , Plantas Geneticamente Modificadas/genética , Biofísica , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA