Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 14(9): 505-580, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35578993

RESUMO

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.


Assuntos
Vesículas Extracelulares , Vacinas , Biomarcadores/análise , Terapia Baseada em Transplante de Células e Tecidos , Vesículas Extracelulares/química , Humanos , Espectrometria de Massas/métodos , Nanomedicina
2.
Cell Signal ; 20(12): 2237-46, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18771725

RESUMO

AS160 (AKT substrate of 160 kDa) is an important mediator of GLUT4 (glucose transporter 4) translocation and glucose-uptake in adipocytes and muscle cells. In our study we have identified a novel splice variant of AS160 (variant 2 of AS160, AS160_v2) that lacks exon 11 and 12. The protein is phosphorylated in response to insulin via the PI3K/AKT pathway. Expression of this splice variant in human tissues from different donors was examined with quantitative RT-PCR. Our data reveal a tissue specific distribution pattern of both isoforms with highest overall expression of AS160_v2. To investigate the function of the novel splice variant we established the doxycycline-inducible expression of the protein in a rat myoblast cell line co-expressing GLUT4-myc. In contrast to data reported for the full-length AS160 protein, over expression and activation of transcript variant 2 in this cell line increased GLUT4 translocation and glucose-uptake rates in response to insulin and IGF-1 but not in response to AICAR or metformin. Immunofluorescence based studies indicated a direct association of AS160_v2 with GLUT4 under basal but not under insulin-stimulated conditions. Additionally, over expression of AS160_v2 slightly improved glucose-uptake rates in a model of insulin resistance but was not able to fully prevent induction of insulin resistance. This was accompanied with decreased phosphorylation of AS160_v2 and AKT. Taken together, our data suggest a tissue specific distribution of full-length AS160 and the novel AS160 splice variant (AS160_v2) indicating different functions. In contrast to full-length AS160, transcript variant 2 of AS160 seems to be a novel regulator of glucose transport that positively influences glucose-uptake rates.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Células Musculares/metabolismo , Adipócitos/fisiologia , Processamento Alternativo , Análise de Variância , Androstadienos/farmacologia , Animais , Sequência de Bases , Transporte Biológico , Proteínas Ativadoras de GTPase/genética , Humanos , Insulina/metabolismo , Citometria de Varredura a Laser , Células Musculares/efeitos dos fármacos , Células Musculares/enzimologia , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fatores de Tempo , Wortmanina
3.
Chembiochem ; 4(10): 928-35, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14523910

RESUMO

The postgenomic era is characterized by an almost intimidating amount of information regarding the sequences and expression of previously unknown genes. In response, researchers have developed an increasing interest in functional studies. At the start of such a study, one may have little more than sequence information and bioinformatic annotation. The next step is to hypothesize a potential role in the context of a cell. Testing of the hypothesis needs to be fast, cheap, and applicable to a large number of genes. Knockdown methods that rely on binding of antisense oligonucleotides to mRNA combined with a subsequent functional assay in cell culture fulfil these requirements: sequence information is sufficient for synthesis of active inhibitors. Depending on the in vitro model chosen, knockdown of gene expression can be achieved with medium or even high throughput. The two most popular methods of knockdown in cell culture are the use of antisense oligonucleotides that rely on ribonuclease H (RNAse H)-dependent cleavage of mRNA, and RNA interference triggered by small double-stranded RNA molecules. Both methods act in a sequence-specific manner and can give efficient knockdown. In both cases, researchers struggle with nonspecific "off-target" effects and the difficulty of site selection. Studies that compare the methods differ in their judgment as to which method is superior.


Assuntos
Oligonucleotídeos Antissenso/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ativação Enzimática/efeitos dos fármacos , Técnicas Genéticas , Oligonucleotídeos Antissenso/química , RNA Catalítico/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/toxicidade , Ribonuclease H/metabolismo
5.
J Am Soc Nephrol ; 12(3): 456-463, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11181793

RESUMO

Atherosclerosis is a chronic inflammatory disease associated with enhanced apoptotic cell death in vascular cells, partly induced by oxidized low-density lipoprotein (OxLDL). However, proinflammatory stimuli such as lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) activate endothelial cells (EC) and inhibit apoptosis through induction of nuclear factor kappaB (NF-kappaB)-dependent genes. This study therefore investigated whether OxLDL or its component, lysophosphatidylcholine (LPC), interacts with the effect of LPS or TNF-alpha on cell survival. Human EC were incubated with LPS, TNF-alpha, OxLDL, or LPC alone or in combinations. OxLDL (100 to 200 microg/ml) and LPC (100 to 300 microM) induced apoptosis dose-dependently. LPS and TNF-alpha had no effect on cell survival in the presence or absence of OxLDL or LPC. LPS and TNF-alpha both induced the antiapoptotic gene A20, whereas OxLDL and LPC suppressed its induction. Expression of A20 is regulated by NF-kappaB. OxLDL and LPC dose-dependently suppressed NF-kappaB activity. For functional analysis, bovine EC were transfected with A20 encoding expression constructs in sense and antisense orientation. Bovine EC that overexpressed A20 were protected against OxLDL-induced apoptosis, whereas expression of antisense A20 rendered cells more sensitive to OxLDL. These results suggest that OxLDL not only induces cell death, as has been shown before, but also compromises antiapoptotic protection of activated EC. OxLDL sensitizes EC to apoptotic triggers by interfering with the induction of A20 during the inflammatory response seen in atherosclerotic lesions. This inhibition is based on repression of NF-kappaB activation. The effect may be caused by the OxLDL component LPC.


Assuntos
Apoptose/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Lipoproteínas LDL/farmacologia , NF-kappa B/metabolismo , Animais , Arteriosclerose/etiologia , Arteriosclerose/metabolismo , Arteriosclerose/patologia , Sequência de Bases , Bovinos , Células Cultivadas , Primers do DNA/genética , Proteínas de Ligação a DNA , Endotélio Vascular/citologia , Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisofosfatidilcolinas/farmacologia , Proteínas Nucleares , Proteínas/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
6.
J Am Soc Nephrol ; 11(10): 1819-1825, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11004212

RESUMO

Oxidized low-density lipoprotein (OxLDL) exerts proliferation and apoptosis in vascular cells, depending on its concentration and the duration of exposure. Recent studies indicate that [O(2)](-) is involved in cell cycle regulation and that OxLDL stimulates endothelial cells to produce [O(2)](-). This study examined the role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as a potential source for [O(2)](-) in the proliferation-inducing activity of OxLDL in cultured human umbilical vein endothelial cells (HUVEC). Human LDL was oxidized by Cu(++), and proliferation of HUVEC was detected by 3H-thymidine incorporation. OxLDL (5 microg/ml) caused an increase in proliferation of HUVEC of 250 to 300%. OxLDL-induced proliferation was blocked by addition of the antioxidants superoxide dismutase and catalase, suggesting that enhanced [O(2)](-) formation was involved. Diphenylene iodonium (DPI, 1 microM), an inhibitor of NADPH oxidase, also prevented OxLDL-induced proliferation of HUVEC, indicating that NADPH oxidase was the source for enhanced [O(2)](-) formation. The OxLDL effect was mimicked by lysophosphatidylcholine (LPC, 10 microM), a compound formed during oxidation of LDL. LPC-induced proliferation was also prevented by coincubation with DPI. Treatment of HUVEC with [O(2)](-) generated by the xanthine/xanthine oxidase reaction resulted in proliferation as did treatment with OxLDL. As expected, this stimulation could not be blocked by DPI. With the use of the cytochrome c-assay, it was demonstrated that OxLDL and LPC enhanced [O(2)](-) formation in HUVEC (by factor 3.2 and by factor 3.5, respectively). Supporting the assumption that NADPH oxidase was the enzyme responsible for [O(2)](-) formation, cells transfected with antisense oligonucleotides for NADPH oxidase showed a significantly reduced [O(2)](-) formation after stimulation with OxLDL and LPC. OxLDL and its compound LPC induce proliferation of HUVEC through activation of NADPH oxidase. The active NADPH oxidase generates [O(2)](-), which mediates the proliferative effects.


Assuntos
Endotélio Vascular/citologia , Lipoproteínas LDL/farmacologia , Proteínas de Membrana Transportadoras , NADPH Desidrogenase/genética , NADPH Oxidases/metabolismo , Fosfoproteínas/genética , Catalase/farmacologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Oniocompostos/farmacologia , Superóxido Dismutase/farmacologia , Superóxidos/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...