Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20918, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251732

RESUMO

Halophilic archaea are a unique group of microorganisms that thrive in high-salt environments, exhibiting remarkable adaptations to survive extreme conditions. Archaeological wood and El-Hamra Lake serve as a substrate for a diverse range of microorganisms, including archaea, although the exact role of archaea in archaeological wood biodeterioration remains unclear. The morphological and chemical characterizations of archaeological wood were evaluated using FTIR, SEM, and EDX. The degradation of polysaccharides was identified in Fourier transform infrared analysis (FTIR). The degradation of wood was observed through scanning electron microscopy (SEM). The energy dispersive X-ray spectroscopy (EDX) revealed the inclusion of minerals, such as calcium, silicon, iron, and sulfur, into archaeological wood structure during burial and subsequent interaction with the surrounding environment. Archaea may also be associated with detected silica in archaeological wood since several organosilicon compounds have been found in the crude extracts of archaeal cells. Archaeal species were isolated from water and sediment samples from various sites in El-Hamra Lake and identified as Natronococcus sp. strain WNHS2, Natrialba hulunbeirensisstrain WNHS14, Natrialba chahannaoensis strain WNHS9, and Natronococcus occultus strain WNHS5. Additionally, three archaeal isolates were obtained from archaeological wood samples and identified as Natrialba chahannaoensisstrain W15, Natrialba chahannaoensisstrain W22, and Natrialba chahannaoensisstrain W24. These archaeal isolates exhibited haloalkaliphilic characteristics since they could thrive in environments with high salinity and alkalinity. Crude extracts of archaeal cells were analyzed for the organic compounds using gas chromatography-mass spectrometry (GC-MS). A total of 59 compounds were identified, including free saturated and unsaturated fatty acids, saturated fatty acid esters, ethyl and methyl esters of unsaturated fatty acids, glycerides, phthalic acid esters, organosiloxane, terpene, alkane, alcohol, ketone, aldehyde, ester, ether, and aromatic compounds. Several organic compounds exhibited promising biological activities. FTIR spectroscopy revealed the presence of various functional groups, such as hydroxyl, carboxylate, siloxane, trimethylsilyl, and long acyl chains in the archaeal extracts. Furthermore, the archaeal extracts exhibited antioxidant effects. This study demonstrates the potential of archaeal extracts as a valuable source of bioactive compounds with pharmaceutical and biomedical applications.


Assuntos
Arqueologia , Lagos , Madeira , Madeira/química , Madeira/microbiologia , Lagos/microbiologia , Egito , Archaea , Espectroscopia de Infravermelho com Transformada de Fourier , Filogenia , Espectrometria por Raios X
2.
Clin Exp Hepatol ; 10(1): 30-38, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38765909

RESUMO

Aim of the study: Jaundice in newborns is a sign of skin and sclera pigmentation. Hyperbilirubinemia and these phenomena do, however, have a relationship. According to many clinical studies, elevated blood bilirubin and low vitamin E (VE) levels in newborns are associated. The aim of the study was to investigate the association of oxidative stress of neonatal hyperbilirubinemia in patients who underwent phototherapy with additional vitamin E supplementation (25 mg/kg/day over the course of three days) and patients without additional vitamin E. Material and methods: A set of 100 neonatal indirect hyperbilirubinemia patients was enrolled at neonatal intensive care units (NICUs) of the pediatric departments at Al Azhar University Hospitals during the period from February 2021 to October 2022 after obtaining signed written informed consent of all neonates' parents with an explanation of the aim of study. Results: Significant differences were found between the studied groups regarding serum bilirubin on the third day of admission (p = 0.039). Patients who were treated with vitamin E had lower serum bilirubin on the third day of admission (8.25 ±3.41) than the control group (11.66 ±3.22). Also, among the VE group, serum bilirubin was significantly decreased on the third day of admission (8.25 ±3.41) compared to zero days of admission (14.10 ±4.39) (p = 0.041). Conclusions: Vitamin E supplementation has an important role in treatment of indirect hyperbilirubinemia in neonates. Early administration of vitamin E in preterm neonates resulted in a significant decrease of serum bilirubin and increased total antioxidant capacity. Vitamin E supplementation in full term decreased the duration of phototherapy.

3.
Microb Cell Fact ; 23(1): 84, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486239

RESUMO

Extreme halophilic archaea that can live in high saline environments can offer potential applications in different biotechnological fields. This study delves into the fascinating field of halophilic archaea and their ability to produce biosurfactants. Some strains of haloarchaea were isolated from Wadi El-Natrun and were screened for biosurfactants production in a standard basal medium using emulsification index assay. Two strains were chosen as the potential strains for surface tension reduction. They were identified as Natrialba sp. BG1 and N3. The biosurfactants production was optimized and the produced emulsifiers were partially purified and identified using FTIR and NMR. Sequential statistical optimization, Plackett-Burman (PB) and Box-Behnken Designs (BBD) were carried out using 5 factors: oil, NaCl, casamino acids, pH, and inoculum size. The most significant factors were used for the next Response Surface Methodology experiment. The final optimal conditions for biosurfactants production were the inoculum size 2% pH 11 and NaCl 250 g/L, for Natrialba sp. BG1 and inoculum size 2.2%, pH 10 and NaCl 100 g/L for Natrialba sp. N3. The produced biosurfactants were tested for wound healing and the results indicated that Natrialba sp. BG1 biosurfactants is more efficient than Natrialba sp. N3 biosurfactants. Biosurfactants extracts were tested for their cytotoxic effects on normal cell line as well as on different cancer cells using MTT assay. The findings demonstrated that varying concentrations of the biosurfactants (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) exhibited cytotoxic effects on the cell lines being tested. Additionally, the outcomes unveiled the presence of anti-inflammatory and antioxidant properties for both biosurfactants. Consequently, they could potentially serve as natural, safe, and efficient novel agents for combating cancer, promoting wound healing, and providing anti-inflammatory and antioxidant benefits.


Assuntos
Halobacteriaceae , Cloreto de Sódio , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Egito , Antioxidantes/metabolismo , Halobacteriaceae/metabolismo , Anti-Inflamatórios/metabolismo
5.
Microb Cell Fact ; 23(1): 20, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218907

RESUMO

The increasing interest in environmental protection laws has compelled companies to regulate the disposal of waste organic materials. Despite efforts to explore alternative energy sources, the world remains heavily dependent on crude petroleum oil and its derivatives. The expansion of the petroleum industry has significant implications for human and environmental well-being. Bioremediation, employing living microorganisms, presents a promising approach to mitigate the harmful effects of organic hydrocarbons derived from petroleum. This study aimed to isolate and purify local yeast strains from oil-contaminated marine water samples capable of aerobically degrading crude petroleum oils and utilizing them as sole carbon and energy sources. One yeast strain (isolate B) identified as Candida tropicalis demonstrated high potential for biodegrading petroleum oil in seawater. Physiological characterization revealed the strain's ability to thrive across a wide pH range (4-11) with optimal growth at pH 4, as well as tolerate salt concentrations ranging from 1 to 12%. The presence of glucose and yeast extract in the growth medium significantly enhanced the strain's biomass formation and biodegradation capacity. Scanning electron microscopy indicated that the yeast cell diameter varied based on the medium composition, further emphasizing the importance of organic nitrogenous sources for initial growth. Furthermore, the yeast strain exhibited remarkable capabilities in degrading various aliphatic and aromatic hydrocarbons, with a notable preference for naphthalene and phenol at 500 and 1000 mg/l, naphthalene removal reached 97.4% and 98.6%, and phenol removal reached 79.48% and 52.79%, respectively. Optimization experiments using multi-factorial sequential designs highlighted the influential role of oil concentration on the bioremediation efficiency of Candida tropicalis strain B. Moreover, immobilized yeast cells on thin wood chips demonstrated enhanced crude oil degradation compared to thick wood chips, likely due to increased surface area for cell attachment. These findings contribute to our understanding of the potential of Candida tropicalis for petroleum oil bioremediation in marine environments, paving the way for sustainable approaches to address oil pollution.


Assuntos
Candida tropicalis , Petróleo , Humanos , Candida tropicalis/metabolismo , Biodegradação Ambiental , Leveduras/metabolismo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Fenol/metabolismo , Naftalenos/metabolismo
6.
J Genet Eng Biotechnol ; 21(1): 150, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015326

RESUMO

BACKGROUND: The ability of actinomycetes to produce bioactive secondary metabolites makes them one of the most important prokaryotes. Marine actinomycetes are one of the most important secondary metabolites producers used for pharmaceuticals and other different industries. RESULTS: In this study, the promising actinomycetes were isolated from Abu-Qir Bay. Four different media named as starch nitrate, starch casein, glycerol asparagine, and glycerol glycine were used as a preliminary experimental media to study the role of the medium components on the counts of actinomycetes in sediment samples. The results indicated that starch casein medium reported the highest counts (30-63 CFU/g) in all the tested sites. Lower counts were detected on starch nitrate and glycerol asparagine. On the other hand, glycerol glycine medium gave the lowest counts (15-48 CFU/g). Abu-Qir8 harbored the highest average count of actinomycetes (63 CFU/g), followed by Abu-Qir1 (48 CFU/g). The lower counts were detected in Abu-Qir5 and Abu-Qir7 (26 and 29 CFU/g, respectively). A total of 12 pure obtained actinomycetes isolates were subjected to morphological, physiological, and biochemical characterization. The selected actinobacterial isolates were subjected to numerical analysis, and the majority of isolates were grouped into four main clusters (A, B, C, & D), and each of them harbored two isolates; additionally, four isolates did not cluster at this similarity level. Isolate W4 was carefully chosen as the most promising pigment and antimicrobial agent's producer; the produced pigment was extracted and optimized by statistical experiments (PBD & BBD) and was tested for its anti-inflammatory activity. The results showed anti-inflammatory effect and prevented the denaturation of BSA protein at a concentration much higher than the safe dose and increased with increasing the pigment concentration. CONCLUSION: Marine actinomycetes play a vital role in the production of novel and important economic metabolites that have many industrial and pharmaceuticals applications. Streptomyces genera are the most important actinomycetes that produce important metabolites as previously reported.

7.
Virol J ; 20(1): 249, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904234

RESUMO

BACKGROUND: Respiratory viruses, particularly adenoviruses (ADV), influenza A virus (e.g., H1N1), and coronaviruses (e.g., HCoV-229E and SARS-CoV-2) pose a global public health problem. Therefore, developing natural wide-spectrum antiviral compounds for disrupting the viral life cycle with antioxidant activity provides an efficient treatment approach. Herein, biosurfactant (Sur) and C50 carotenoid pigment (Pig) of haloalkaliphilic archaeon Natrialba sp. M6 which exhibited potent efficacy against hepatitis and anti-herpes simplex viruses, were investigated against pulmonary viruses. METHODS: The cytotoxicity of the extracted Sur and Pig was examined on susceptible cell lines for ADV, HIN1, HCoV-229E, and SARS-CoV-2. Their potential against the cytopathic activity of these viruses was detected with investigating the action modes (including, virucidal, anti-adsorption, and anti-replication), unveiling the main mechanisms, and using molecular docking analysis. Radical scavenging activity was determined and HPLC analysis for potent extract (Sur) was performed. RESULTS: All current investigations stated higher anti-pulmonary viruses of Sur than Pig via mainly virucidal and/or anti-replicative modes. Moreover, Sur had stronger ADV's capsid protein binding, ADV's DNA polymerase inhibition, suppressing hemagglutinin and neuraminidase of H1N1, and inhibiting chymotrypsin-like (3CL) protease of SARS-CoV-2, supporting with in-silico analysis, as well as radical scavenging activity than Pig. HPLC analysis of Sur confirmed the predominate presence of surfactin in it. CONCLUSION: This study declared the promising efficacy of Sur as an efficient pharmacological treatment option for these pulmonary viruses and considered as guide for further in vivo research.


Assuntos
Coronavirus Humano 229E , Vírus da Influenza A Subtipo H1N1 , Antivirais/uso terapêutico , Simulação de Acoplamento Molecular , SARS-CoV-2 , Carotenoides/farmacologia
8.
Sci Rep ; 13(1): 14270, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652963

RESUMO

Phycobiliproteins (PBPs) are a class of water-soluble pigments with a variety of biological functions that are present in red macroalgae and cyanobacterial species. The crude forms of phycocyanin (C-PC) from the blue green alga Arthrospira platensis and allophycocyanin (APC) from the red macroalga Corallina officinalis were extracted and purified by ammonium sulphate precipitation, anion exchange chromatography, and size exclusion chromatography methods, respectively. The obtained C-PC and APC from A. platensis and C. officinalis were 0.31 mg/mL and 0.08 mg/mL, respectively, with molecular masses of "17.0 KDa and 19.0 KDa" and "15.0 KDa and 17.0 KDa" corresponding to α and ß subunits, respectively. FT-IR was used to characterize the purified APC and C-PC in order to look into their structures. Highly purified extracts (A620/A280 > 4.0) were obtained from subtractions' PC3 and PC4 that were tested for their biological activities. APC and C-PC crude extracts plus their fractions exhibited potent anti-oxidant in different ratios by using three techniques. PC1 showed high anti-inflammatory (75.99 and 74.55%) and anti-arthritic (78.89 and 76.92%) activities for C. officinalis and A. platensis, respectively compared with standard drugs (72.02 and 71.5%). The methanolic and water extracts of both species showed greater antibacterial efficacy against Gram +ve than Gram -ve marine bacteria. Our study shed light on the potential medical uses of C-PC and APC extracted from the tested species as natural substances in a variety of foods and drugs. Further investigations are required to explore the diverse chemical natures of distinct PBPs from different cyanobacteria and red algae because their amino acid sequences vary among different algal species.


Assuntos
Ficobiliproteínas , Rodófitas , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Tradit Complement Med ; 13(3): 277-284, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37128195

RESUMO

Background and aim: Several studies have reported the cardioprotective effect of vitamin D. Thus, this study aimed to investigate the possible cardioprotective effect of vitamin D3 in hyperthyroid-induced cardiomyopathy rat model. Experimental procedure: Rats were divided into 3 groups: control group; hyperthyroid group, rats were administrated l-thyroxine sodium daily for 4 weeks; and hyperthyroid + vitamin D3 treated group, rats were treated with l-thyroxine sodium for 4 weeks daily, and received the vitamin D3 for the same duration. After 4 weeks, electrocardiogram (ECG) was recorded. Then, blood samples were collected for biochemical analysis. After that, the final body weight was measured, and the rats were sacrificed. Finally, the hearts were excised, weighed and were prepared for histological examination by hematoxylin and eosin, and immunohistochemistry assessment of caspase-3 and proliferating cell nuclear antigen (PCNA). Results: Hyperthyroid rats showed significant ECG changes, increased serum levels of cardiac biomarkers, fibroblast growth factor-23 (FGF23), malondialdehyde, antioxidant enzymes, tumor necrosis factor-alpha (TNF-α) and relative heart weight compared with the control rats. Vitamin D3 coadministration with l-thyroxine resulted in significant improvement in thyroid profile, ECG parameters, significant decrease of cardiac biomarkers, FGF23, malondialdehyde, TNF-α and relative heart weight, and significant decrease of the antioxidant enzymes compared with the hyperthyroid rats. The histological study was consistent with the biochemical results. Hyperthyroid rats showed upregulation of caspase-3 and PCNA in the myocardium compared with control group. Vitamin D3 treated rats showed downregulation of caspase-3 and PCNA. Conclusion: Vitamin D3 provides cardioprotective effects in hyperthyroid rats.

10.
Microb Cell Fact ; 22(1): 94, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147660

RESUMO

Due to the therapeutic importance of microbial pigments, these pigments are receiving the attention of researchers. In this present study 60 isolates were isolated from sediments of Abu-Qir coast of the Mediterranean sea, Alexandria, Egypt, out of which 12 were considered as pigmented actinomycetes. Streptomyces sp. W4 was characterized by small round green pigmented colonies when grown on starch-casein agar medium. The green pigment was extracted using a mixture of acetone-methanol (7:3 v/v). The antimicrobial, antioxidant, antiviral, and anticancer activities of the green pigment produced by Streptomyces sp.W4 were investigated. The pigment was characterized using FTIR, Raman spectroscopy, EDX and GC-MS. The results revealed that the pigment has antibacterial and antifungal activity and also showed inhibition of HAV 78% but its antiviral activity against the Adenovirus was weak. The results proved the safety of the pigment toward normal cells and anticancer activity against three different cancer cell lines HepG-2 (liver cancer cell line), A549 (lung cancer cell line), and PAN1 (pancreas cancer cell line). The pigment was combined with 9 antibiotics and then tested against the Gram-negative bacterium Enterococcus faecalis using disc diffusion bioassay. LEV showed an antagonistic effect, while CXM and CIP showed a synergistic effect.


Assuntos
Anti-Infecciosos , Streptomyces , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Egito , Anti-Infecciosos/metabolismo , Antibacterianos/química , Streptomyces/metabolismo
11.
Sci Rep ; 13(1): 2550, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781949

RESUMO

It is crucial to identify more biological adsorbents that can efficiently uptake metals from wastewater. Dry haloalkaliphilic archaea Natronolimnobius innermongolicuswas evaluated for Cd ions biosorption. The optimal operating conditions (pH, biomass dose, initial metal concentration, contact time, and isotherms models) were tested. Biosorption process is influenced by the metal's solution pH with maximum removal of 83.36% being achieved at pH 8. Cadmium ions uptake reaches equilibrium in about 5 min of biosorption process. The Langmuir model was determined to better fit the Cd(II) biosorption by dry archaea. The maximal uptake capacity (qmax) of Cd(II) was 128.21 mg/g. The effect of multi-component system on biosorption behaviour of Pb, Ni, Cu, Fe, and Cd ions by immobilized dried archaeal cells, dried archaeal cells, and dried bryozoa was studied using Plackett-Burman experimental design. The investigated biosorbents were effective at removing metals from contaminated systems, particularly for Fe, Pb, and Cd ions. Moreover, the interaction behaviour of these metals was antagonistic, synergistic, or non-interactive in multi-metals system. SEM, EDX, and FTIR spectra revealed changes in surface morphology of the biomass through the biosorption process. Finally, continuous adsorption experiment was done to examine the ability of immobilized biomass to adsorb metals from wastewater.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/análise , Águas Residuárias , Cinética , Adsorção , Chumbo , Concentração de Íons de Hidrogênio , Biomassa , Íons
12.
J Genet Eng Biotechnol ; 20(1): 168, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542258

RESUMO

BACKGROUND: Natural dyes are present in living organisms such as animals and plants and microorganisms such as fungi, bacteria, algae, and yeast. Pigments are fast and easy growth by using cheap components and do not effect by environmental conditions because they required some physical factors like heat, light, and pH and also they have many biotechnological applications such as medical and industrial needs. The natural pigments can act as antimicrobial agents and are used in drug manufacturing. Also, it can be used in the food industry as natural colorants instead of the synthetic colorants due to their safety on human health and low toxicity when emitted into the environment. RESULTS: A pigmented actinomycetes LS1 strain isolated from El Mahmoudia canal (sediment soil) located in Egypt was microscopically examined and identified as Streptomyces sp. by molecular approach. Extraction, purification, and characterization of produced red pigment metabolite like carotenoids related were established based on spectroscopic studies and comparing the data from the literature. Factors (nutritional and physical) influencing red pigmentation by this isolate were investigated through One Variable At Time (OVAT), and then, the optimal levels of the significant key variables were recorded. Also, the productivity yield reached 30 mg of dried purified pigment/gram dry weight. The biological activity of the red product was tested against Gram-positive and Gram-negative marine bacterial pathogens; the recorded antimicrobial activity is more prominent against (P. aeruginosa ATCC 9027, K. pneumoniae ATCC 13883, S. aureus ATCC 6538, B. subtilis ATCC 6633 and E. coli ATCC 10418) at nearly 0.07 mg mL-1 concentration. Also, the tested red pigment showed a positive antifouling activity (AF) against marine microbes; the activity increased by increasing the pigment concentrations from 1 to 3 mg mL-1. CONCLUSION: The present work focused on the optimization of culture conditions for the production of red pigment by Streptomyces sp. LS1; then, the antibacterial activity and antifouling activity of the produced pigments were tested.

13.
Sci Rep ; 12(1): 16577, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195643

RESUMO

Halophilic archaea is considered an promising natural source of many important metabolites. This study focused on one of the surface-active biomolecules named biosurfactants produced by haloarchaeon Natrialba sp. M6. The production trend was optimized and the product was partially purified and identified using GC-Mass spectrometry. Sequential optimization approaches, Plackett-Burman (PB) and Box-Behnken Designs (BBD) were applied to maximize the biosurfactants production from M6 strain by using 14 factors; pH, NaCl, agitation and glycerol; the most significant factors that influenced the biosurfactant production were used for Response Surface Methodology (RSM). The final optimal production conditions were agitation (150 rpm), glycerol (3%), NaCl (20.8%), pH (12) and cultivation temperature (37°C). GC-Mass spectrometry for the recovered extract revealed the presence of a diverse group of bipolar nature, hydrophobic hydrocarbon chain and charged function group. The majority of these compounds are fatty acids. Based on results of GC-MS, compositional analysis content and Zetasizer, it was proposed that the extracted biosurfactant produced by haloarchaeon Natrialba sp. M6 could be a cationic lipoprotein. The antiviral activity of such biosurfactant was investigated against hepatitis C (HCV) and herpes simplex (HSV1) viruses at its maximum safe doses (20 µg/mL and 8 µg/mL, respectively). Its mode of antiviral action was declared to be primarily via deactivating viral envelopes thus preventing viral entry. Moreover, this biosurfactant inhibited RNA polymerase- and DNA polymerase-mediated viral replication at IC50 of 2.28 and 4.39 µg/mL, respectively also. Molecular docking studies showed that surfactin resided well and was bound to the specified motif with low and accepted binding energies (ΔG = - 5.629, - 6.997 kcal/mol) respectively. Therefore, such biosurfactant could be presented as a natural safe and effective novel antiviral agent.


Assuntos
Hepatite C , Herpes Simples , Antivirais/farmacologia , DNA Polimerase Dirigida por DNA , Ácidos Graxos , Glicerol , Halobacteriaceae , Hepacivirus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Cloreto de Sódio , Tensoativos/química
14.
Microb Cell Fact ; 21(1): 82, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562834

RESUMO

The production of bioelectricity via the anaerobic oxidation of organic matter by microorganisms is recently receiving much interest and is considered one of the future alternative technologies. In this study, we aimed to produce electrical current by using facultative halophilic archaeon Natrialba sp. GHMN55 as a biocatalyst at the anode of a microbial fuel cell (MFC) to generate electrons from the anaerobic breakdown of organic matter to produce electrical current. Since the MFC's performance can be affected by many factors, the Plackett-Burman experimental design was applied to optimize the interaction between these factors when tested together and to identify the most significant factors that influence bioelectricity generation. We found that the factors that significantly affected electrical current generation were casein, inoculum age, magnet-bounded electrodes, NaCl, resistor value, and inoculum size; however, the existence of a mediator and the pH showed negative effects on bioelectricity production, where the maximum value of the 200 mV voltage was achieved after 48 h. The optimum medium formulation obtained using this design led to a decrease in the time required to produce bioelectricity from 20 days (in the basal medium) to 2 days (in the optimized medium). Also, the overall behavior of the cell could be enhanced by using multiple stacked MFCs with different electrical configurations (such as series or parallel chambers) to obtain higher voltages or power densities than the single chambers where the series chambers were recorded at 27.5 mV after 48 h of incubation compared with 12.6 mV and 1.1 mV for parallel and single chambers, respectively. These results indicate that the order of preferred MFC designs regarding total power densities would be series > parallel > single.


Assuntos
Archaea , Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Halobacteriaceae
15.
Sci Rep ; 10(1): 5986, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249805

RESUMO

Halophilic archaea are a promising natural source of carotenoids. However, little information is available about the biological impacts of these archaeal metabolites. Here, carotenoids of Natrialba sp. M6, which was isolated from Wadi El-Natrun, were produced, purified and identified by Raman spectroscopy, GC-mass spectrometry, and Fourier transform infrared spectroscopy, LC-mass spectrometry and Nuclear magnetic resonance spectroscopy. The C50 carotenoid bacterioruberin was found to be the predominant compound. Because cancer and viral hepatitis are serious diseases, the anticancer, anti-HCV and anti-HBV potentials of these extracted carotenoids (pigments) were examined for the first time. In vitro results indicated that the caspase-mediated apoptotic anticancer effect of this pigment and its inhibitory efficacy against matrix metalloprotease 9 were significantly higher than those of 5-fluorouracil. Furthermore, the extracted pigment exhibited significantly stronger activity for eliminating HCV and HBV in infected human blood mononuclear cells than currently used drugs. This antiviral activity may be attributed to its inhibitory potential against HCV RNA and HBV DNA polymerases, which thereby suppresses HCV and HBV replication, as indicated by a high viral clearance % in the treated cells. These novel findings suggest that the C50 carotenoid of Natrialba sp. M6 can be used as an alternative source of natural metabolites that confer potent anticancer and antiviral activities.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Carotenoides/farmacologia , Eritrócitos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Halobacteriaceae , Carotenoides/isolamento & purificação , Linhagem Celular , Humanos , Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
16.
Med Sci Educ ; 29(4): 1163-1170, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34457597

RESUMO

BACKGROUND: Team-Based Learning (TBL) is an instructor-led, structured form of cooperative learning that promotes self-directed learning and teamwork while equipping students with the problem-solving and collaborative skills needed to meet the demands of their future professions. This study examines the impact of applying a modified TBL approach to enhance educational seminars in a PBL-adopted curriculum. METHODS: A total of 300 students participated in the study. Students' Individual Readiness Assurance Test (IRAT) mean scores were compared with mean scores of the same students' Group Readiness Assurance Test (GRAT). Student satisfaction was determined on a scale with 6 options in response to 13 questions to compare different aspects of traditional and TBL educational seminars. RESULTS: Comparison between IRAT and GRAT scores showed consistently higher GRAT scores. The majority of students expressed their overall satisfaction in favor of the TBL seminar, especially regarding seminar organization, knowledge acquisition, and team work skills. CONCLUSION: Application of the TBL approach in educational seminars increased second- and third-year medical students' engagement and satisfaction and improved their test performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA